Let G be a locally compact group with left invariant Haar measure m. For any measurable subset S of G, define L_S to be that subset of $L^1(G)$ consisting of all functions which vanish (a.e.) on the complement of S. When L_S forms an algebra, we call it a vanishing algebra. It is known that when S is a semigroup l.a.e. (i.e., there exists a semigroup T in G such that $S=T$ locally almost everywhere), L_S is a vanishing algebra. The following theorem gives an answer to a problem formulated by A. Simon [2]:

Theorem 1. Suppose G is unimodular. If L_S is a vanishing algebra and S is contained in a σ-compact subset of G, then S is a semigroup a.e.

Corollary 1. Suppose G is compact. Then, if L_S is a vanishing algebra, S is a semigroup a.e.

Corollary 2. Suppose G is abelian and generated by some compact neighborhood of the identity element of G. Then, if L_S is a vanishing algebra, S is a semigroup a.e.

The proof of Theorem 1 also gives the following more general and involved statement:

Theorem 2. Let L_S be a vanishing algebra. Suppose there exists a directed set $\{ U_i, i \in I \}$ of symmetric neighborhoods of the identity element e with finite measures, having the property that for almost all the points x of S there exists an $j_x \in I$ such that $m(S \cap x U_j)$ and $m(x^{-1} U_i \cap S^{-1})$ are both $> m(U_j)/2$ as $i \geq j_x$. Then S is a semigroup l.a.e. If, in addition, S is contained in a σ-compact subset of G, then S is a semigroup a.e.

Theorem 3. If L_S is a self-adjoint vanishing algebra, then S is a group l.a.e. If, in addition, S is contained in a σ-compact subset of G, then S is a group a.e.

Theorem 4. Let L_S be a vanishing algebra. If S is open, then S is a semigroup l.a.e. If, in addition, S is contained in a σ-compact subset of G, then S is a semigroup a.e.

Theorem 5. If L_S is a maximal vanishing algebra, then S is a closed

1 This research was sponsored in part by the United States Army Research Office (Durham) under contract DA-ARO(D)-31-124-G218. The author wishes to express his debt to Professor C. Ionescu Tulcea and Professor R. Ellis for many helpful discussions.
semigroup l.a.e. If, in addition, S is contained in a σ-compact subset of G, then S is a closed semigroup a.e.

Corollary 3. Let G be abelian and generated by some compact neighborhood of the identity element of G. If there exists a vanishing algebra L_S which is a maximal subalgebra in $L^1(G)$, then G is either the additive group of real numbers or the discrete integer group.

References

Academia Sinica, Taiwan, China and University of Pennsylvania