ON GROUPS WITH FINITELY MANY INDECOMPOSABLE INTEGRAL REPRESENTATIONS

BY A. HELLER AND I. REINER

Communicated by Daniel Zelinsky, January 19, 1962

1. Introduction. The purpose of this note is to sketch a proof of the following theorem.

THEOREM. If G is a finite group having finitely many non-isomorphic indecomposable integral representations then for no prime p does p^3 divide the order of G.

It is known that the same hypothesis implies that all the Sylow subgroups of G are cyclic; thus they are cyclic of order p or p^2. We do not know whether the converse is true. On the other hand, we have shown elsewhere [1] that a cyclic group of order p^2 has finitely many non-isomorphic integral representations.

In the same place it is shown that the above theorem follows from this proposition:

PROPOSITION. Let G be a cyclic group of order p^3. Then G has infinitely many non-isomorphic indecomposable representations over the p-adic integers.

We outline below the proof of this proposition, which will appear in full elsewhere.

2. Construction of indecomposables. Let Λ be a ring such that the Krull-Schmidt theorem holds for finitely generated left Λ-modules; this is certainly the case for algebras of finite rank over a complete valuation ring [3]. We shall write Hom for Hom_Λ and Ext for Ext_Λ.

Suppose that M and N are indecomposable Λ-modules such that $\text{Hom}(M, N) = 0$, $\text{Hom}(N, M) = 0$. If $M^{(k)}$ is a direct sum of k copies of M then $\text{Hom}(M^{(k)}, M^{(k)})$ may be identified with the ring of $k \times k$ matrices with entries in $H = \text{Hom}(M, M)$. Also $\text{Ext}(N^{(u)}, M^{(v)})$ consists of $t \times u$ matrices with entries in $\text{Ext}(N, M)$. If $H' = \text{Hom}(N, N)$ then $\text{Ext}(N, M)$ is an (H, H')-bimodule, and $t \times t$ matrices over H and $u \times u$ matrices over H' operate in the obvious way on $\text{Ext}(N^{(u)}, M^{(v)})$.

We shall say that a matrix $X \in \text{Ext}(N^{(u)}, M^{(v)})$ is decomposable if there are invertible matrices T over H and U over H' such that

\[X = TU. \]

\[1 \] The research of the second author was supported in part by a research contract with the Office of Naval Research.
where, of course, B and D need not be square matrices.

Lemma 1. An extension E of $N^{(u)}$ by $M^{(t)}$ with extension class X is a decomposable module if and only if X is a decomposable matrix.

In order to apply this lemma it is convenient to observe the following consequence.

Corollary. Let \tilde{A}, \tilde{A}' be quotient rings of H, H'. Suppose $V \subseteq \text{Ext}(N, M)$ is an (H, H')-submodule and that \tilde{V} is a quotient of V on which \tilde{A}, \tilde{A}' operate. If X is a matrix with entries in \tilde{V} whose image \tilde{X} in \tilde{V} is $(\tilde{A}, \tilde{A}^{'})$-indecomposable then the extension corresponding to X is an indecomposable module.

3. **Construction of the submodule.** In this paragraph we set $\Delta = E_2 = Z_p^*G_p^*$, where Z_p^* is the ring of p-adic integers, and G_p^* is cyclic of order p^2 with generator g. We write $C = (g^p - 1)E_2$ and $E_1 = E_2/C$. For any module N, we shall set $\mathbf{N} = N/pN$.

Now $\text{Ext}(C, E_1) \approx \mathbb{Z}[g]/(g-1)^p$. We define M to be the extension of C by E_1 with extension class $g - 1$. Since $\text{Hom}(E_1, C) = 0$, $\text{Hom}(C, E_1) = 0$, we may apply Lemma 1 with $k = 1$. Thus M is indecomposable. Further, if $H = \text{Hom}(M, M)$, there is a canonical monomorphism $\rho: H \rightarrow \text{Hom}(C, C) + \text{Hom}(E_1, E_1)$ whose image may be described as follows [2].

Lemma 2. $\rho(H)$ consists of pairs (a_L, b_L), where $a, b \in E_2$ and the subscript L denotes left multiplication, such that

$$(g - 1)(a - b) \in pE_2 + (g - 1)^pE_2.$$

Denoting by rad H the Jacobson radical of H, we have the following consequence.

Corollary. $\rho(\text{rad} H)$ consists of pairs $(a_L, b_L) \subseteq \rho(H)$ such that $a, b \in \text{rad} E_2 = pE_2 + (g - 1)E_2$. Thus $\tilde{H} = H/\text{rad} H \approx \mathbb{Z}$.

Although M is indecomposable this is not true of \overline{M}. We have instead the following result.

Lemma 3. $\overline{M} = E_2u \oplus E_2v$ as an E_2 module, where $pu = pv = (g - 1)u = (g - 1)p^{2-v}v = 0$.

Now let V be the submodule $E_2u + E_2 (g - 1)v$ of \overline{M}. Then, as a consequence of Lemma 2, we have the following result.
Lemma 4. \(V \) is an \(H \)-submodule of \(\overline{M} \) and \((\text{rad } H) V = E_2(g-1)^2v \). Thus \(\overline{V} = V/(\text{rad } H) V \) is a two-dimensional \(\overline{H} \)-space with basis \(\overline{u}, \overline{v} \), the images of \(u \) and \((g-1)v \).

4. Proof of the proposition. We now change our notation so that \(A = E_3 = \mathbb{Z}^* G_p \) where \(G_p \) is cyclic of order \(p^z \) with generator \(g_p \). Then \(g_p \rightarrow g \) defines a ring epimorphism \(E_3 \rightarrow E_2 \); we use this to turn all \(E_3 \)-modules into \(E_2 \)-modules.

If \(N = (g_p^z - 1)E_3 \), and \(M \) is the module defined in §3, then \(\text{Hom}(M, N) = \text{Hom}(N, M) = 0 \) and \(\text{Ext}(N, M) = \overline{M} \). But \(H' = \text{Hom}(N, N) \) consists only of left multiplications \(aL, a \in E_3 \). Thus \((\text{rad } H') V = E_2(g-1)^2v \) and \(\overline{H'} = H'/\text{rad } H' \approx \overline{Z} \) operates on \(\overline{V} \).

We are now in a position to apply the corollary to Lemma 1. For any integer \(k \) let \(X^{(k)} \in \text{Ext}(N^{(k)}, M^{(k)}) \) be the matrix \(X^{(k)} = uI + (g-1)vJ \), where \(J \) is any \(k \times k \) indecomposable matrix over \(\overline{Z} \). Since the matrices \(X^{(k)} = \overline{u}I + \overline{v}J \) are clearly \(\overline{Z} \)-indecomposable, i.e., \((\overline{H}, \overline{H}') \)-indecomposable, the same must be true of the corresponding extensions.

References

University of Illinois