TWO APPLICATIONS OF THE METHOD OF CONSTRUCTION
BY ULTRAPOWERS TO ANALYSIS

BY W. A. J. LUXEMBURG

Communicated by A. Erdélyi, February 7, 1962

1. Introduction. Recently, A. Robinson in [1] has given a proper extension of classical analysis, which he called nonstandard analysis. His theory is based on the general metamathematical result that there exist nonstandard models for the system \mathbb{R} of real numbers. Such models of \mathbb{R} may be constructed in the form of ultrapowers as defined by T. Frayne, D. Scott, and A. Tarski in [2]. The object of this paper is to apply Robinson's method in order to obtain a new proof of the Hahn-Banach extension theorem and in order to give a new and simple proof of a result about the existence of certain measures on Boolean algebras which was recently obtained by O. Nikodem in [3; 4].

It may be of interest to the reader to point out that the use of nonstandard arguments in the proof of the Hahn-Banach extension theorem eliminates the use of Zorn's lemma. In fact, the validity of the Hahn-Banach extension theorem is a consequence of the apparently weaker hypothesis that every proper filter is contained in an ultrafilter, i.e., the prime ideal theorem for Boolean algebras. It seems likely, that conversely the Hahn-Banach extension theorem implies the prime ideal theorem for Boolean algebras.

A more detailed presentation of the subject of this announcement will be contained in lecture notes on nonstandard analysis under preparation by the author.

2. Nonstandard models of \mathbb{R}. Let \mathbb{R} denote the real number system. Let D be an arbitrary set and let \mathcal{U} be an ultrafilter on D. If A and B are two mappings of D into \mathbb{R}, i.e., $A, B \in D^\mathbb{R}$, then we say that $A \equiv_\mathcal{U} B$ if and only if $\{ n: n \in D \text{ and } A(n) = B(n) \} \subseteq \mathcal{U}$. The relation $A \equiv_\mathcal{U} B$ is easily seen to be an equivalence relation. The set $D^\mathbb{R}/\mathcal{U}$ of all equivalence classes will be denoted by \mathbb{R}^* and the equivalence class of a mapping A of D into \mathbb{R} will be denoted by a. Thus $A \in a$. Finally, we define the algebraic operations in \mathbb{R}^* as follows: $a + b = c$ if and only if there exist elements $A \in a$, $B \in b$ and $C \in c$ such that $\{ n: n \in D \text{ and } A(n) + B(n) = C(n) \} \subseteq \mathcal{U}$; and a similar definition

1 Work on this paper was supported in part by National Science Foundation Grant No. G-19914.
for \(ab = c \) and \(a \leq b \). With these definitions \(R^* \) is a totally-ordered field and \(R \subseteq R^* \). If \(R \not= R^* \), then \(R^* \) is non-archimedean and is a non-standard model of \(R \). In this case the following two subsets are introduced. \(M_0 \) is the set of all \(a \in R^* \) such that \(|a| < r \) for some \(r \in R \). Then \(M_0 \) is a ring and the elements of \(M_0 \) are called the finite elements of \(R^* \). \(M_1 \) is the set of all \(a \in R^* \) such that \(|a| < r \) for all \(r \in R \) and \(r > 0 \). The elements of \(M_1 \) are called infinitesimals. Furthermore, \(M_1 \) is a maximal ideal of \(M_0 \) and \(M_0/M_1 \) is isomorphic to \(R \). The homomorphism of \(M_0 \) onto \(R \) with kernel \(M_1 \) will be called “standard part” and will be denoted by \(\text{st} \). If \(a \in M_0 \), then \(\text{st}(a) \) is the unique real number which is infinitely close to \(a \). This homomorphism is order preserving.

The terminology used in this section is taken from [1].

3. The Hahn-Banach extension theorem. In this section we shall sketch a proof of the Hahn-Banach extension theorem using non-standard arguments.

Theorem (Hahn-Banach). Let \(E \) be a real linear space and let \(p \) be a sublinear functional defined on \(E \), i.e., a mapping \(p \) of \(E \) into \(R \) such that \(p(x+y) \leq p(x) + p(y) \) for all \(x, y \in E \) and \(p(tx) = tp(x) \) for all \(x \in E \) and all real \(t \geq 0 \). If \(f \) is a real linear functional defined on a linear subspace \(G \) of \(E \) such that \(f(x) \leq p(x) \) for all \(x \in G \), then there exists a real linear functional \(F \) on \(E \) such that \(F(x) = f(x) \) for all \(x \in G \) and \(F(x) \leq p(x) \) for all \(x \in E \).

Proof. Let \(\{f_n : n \in D\} \) be the family of all linear functionals which are defined on some linear subspace of \(E \) which contains \(G \) and which have the following properties: \(f_n(x) = f(x) \) for all \(x \in G \) and \(f_n(x) \leq p(x) \) for all \(x \in E \) for which \(f_n(x) \) is defined. It is evident that \(D \neq \emptyset \). For every \(x \in E \) we denote by \(D_x \) the set of all indices \(n \in D \) such that the domain of \(f_n \) contains \(x \). It follows from Banach’s proof (see [5, p. 28]) that \(D_x \neq \emptyset \) for all \(x \in E \). Furthermore, the family \(\{D_x : x \in E\} \) of subsets of \(D \) has the finite intersection property, i.e., if \(x_1, \ldots, x_n \) are elements of \(E \), then \(\bigcap_{i=1}^{n} D_{x_i} \neq \emptyset \). Indeed, apply Banach’s construction successively to the elements \(x_1, \ldots, x_n \). Hence, there exists an ultrafilter \(U \) on \(D \) which contains the family \(\{D_x : x \in E\} \). Let \(R^* \) be the ultrapower \(D^R/U \). Then we define the following mapping \(\bar{f} \) of \(E \) into \(R^* \). If \(x \in E \), then \(\bar{f}(x) \) is that element of \(R^* \) which is determined by an element \(A \) of \(D^R \) such that \(A(n) = f_n(x) \) for all \(n \in D_x \). Then it is easy to see that \(\bar{f} \) is a linear transformation of \(E \) into \(R^* \) (consider \(R^* \) as a vector space over \(R \)) and that \(\bar{f} \) has the following properties: (i) \(\bar{f}(x) = f(x) \) for all \(x \in G \) and (ii) \(\bar{f}(x) \leq p(x) \) for all \(x \in E \).
From (ii) it follows that $-p(-x) \leq \hat{f}(x) \leq p(x)$ for all $x \in E$, i.e., $\hat{f}(x)$ is finite for all $x \in E$. Hence, $F(x) = \text{st}(\hat{f}(x))$ is the required linear functional. This completes the proof of the theorem.

Remark. The proof shows that the ultrafilter U is fixed, i.e., there exists an element $n \in D$ such that $\{n\} \in U$. Furthermore, there exists a one-to-one correspondence between the family of all ultrafilters on D containing the family $\{D_x : x \in E\}$ and the family of all extensions of f satisfying the conditions of the theorem.

4. A theorem of Nikodým. Let B be a Boolean algebra. It is well-known that there does not always exist on B a strictly positive real-valued finitely additive measure. Therefore, the following result, which was recently obtained by O. Nikodým in [3; 4], is of interest.

Theorem (O. Nikodym). For every Boolean algebra B there exists a totally ordered field F which is in general non-archimedean such that B admits a strictly positive F-valued finitely additive measure.

Proof. Let B be a Boolean algebra and let $\{\mu_n : n \in D\}$ be the collection of all real-valued measures on B such that $\mu_n(1) = 1$ for all $n \in D$. For every $0 \not= a \in B$ we denote by D_a the set of all $n \in D$ such that $\mu_n(a) \neq 0$. It is well known that $D \neq \emptyset$ for all $0 \not= a \in B$ (Stone's Theorem). Hence, the family of sets $\{D_a : 0 \not= a \in B\}$ has the finite intersection property. Let U be an ultrafilter on D which contains the family $\{D_a : 0 \not= a \in B\}$. Let F be the ultrapower D^R/U. Then F is a totally ordered field, $R \subseteq F$ and $R \not= F$ if and only if F is non-archimedean. We define now the following mapping $\bar{\mu}$ of B into F. If $0 \not= a \in B$, then $\bar{\mu}(a)$ is that element of F which is determined by the element $A \in D^R$ which has the following property: $A(n) = \mu_n(a)$ for all $n \in D_a$; and we define $\bar{\mu}(0) = 0$. Then, by construction, $\bar{\mu}$ has the following properties: (i) $\bar{\mu}(a) = 0$ if and only if $a = 0$, i.e., $\bar{\mu}$ is strictly positive and (ii) $\bar{\mu}(a \lor b) = \bar{\mu}(a) + \bar{\mu}(b)$ whenever $a \land b = 0$, i.e., $\bar{\mu}$ is finitely-additive. This completes the proof of the theorem.

Remark. If B does not admit a strictly positive real-valued finitely additive measure, then the totally-ordered field F constructed in the proof of the preceding theorem is a proper extension of R and hence, $\bar{\mu}(a)$ is infinitesimal for at least one element $0 \not= a \in B$.

References

A. Robinson

T. E. Frayne, D. S. Scott and A. Tarski

2. Reduced products, Notices Amer. Math. Soc. 5 (1958), 673.

O. Nikodym

S. Banach

California Institute of Technology