The homotopy theory of projective modules
HTML articles powered by AMS MathViewer
- by H. Bass and S. Schanuel PDF
- Bull. Amer. Math. Soc. 68 (1962), 425-428
References
- M. F. Atiyah and F. Hirzebruch, Vector bundles and homogeneous spaces, Proc. Sympos. Pure Math., Vol. III, American Mathematical Society, Providence, R.I., 1961, pp. 7–38. MR 0139181
- Maurice Auslander and Oscar Goldman, The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97 (1960), 367–409. MR 121392, DOI 10.1090/S0002-9947-1960-0121392-6 3. H. Bass, Big projective modules are free (in preparation).
- Hyman Bass, Projective modules over algebras, Ann. of Math. (2) 73 (1961), 532–542. MR 177012, DOI 10.2307/1970315
- Jean Dieudonné, Les déterminants sur un corps non commutatif, Bull. Soc. Math. France 71 (1943), 27–45 (French). MR 12273, DOI 10.24033/bsmf.1345
- M. Eichler, Über die Idealklassenzahl hyperkomplexer Systeme, Math. Z. 43 (1938), no. 1, 481–494 (German). MR 1545733, DOI 10.1007/BF01181104
- Irving Kaplansky, Modules over Dedekind rings and valuation rings, Trans. Amer. Math. Soc. 72 (1952), 327–340. MR 46349, DOI 10.1090/S0002-9947-1952-0046349-0
- J.-P. Serre, Modules projectifs et espaces fibrés à fibre vectorielle, Séminaire P. Dubreil, M.-L. Dubreil-Jacotin et C. Pisot, 1957/58, Fasc. 2, Exposé 23, Secrétariat mathématique, Paris, 1958, pp. 18 (French). MR 0177011
- Jean-Pierre Serre, Faisceaux algébriques cohérents, Ann. of Math. (2) 61 (1955), 197–278 (French). MR 68874, DOI 10.2307/1969915
- E. Spanier, Infinite symmetric products, function spaces, and duality, Ann. of Math. (2) 69 (1959), 142–198[ erratum, 733. MR 105106, DOI 10.2307/1970099
- Norman Steenrod, The Topology of Fibre Bundles, Princeton Mathematical Series, vol. 14, Princeton University Press, Princeton, N. J., 1951. MR 0039258, DOI 10.1515/9781400883875
- J. H. C. Whitehead, Simple homotopy types, Amer. J. Math. 72 (1950), 1–57. MR 35437, DOI 10.2307/2372133
Additional Information
- Journal: Bull. Amer. Math. Soc. 68 (1962), 425-428
- DOI: https://doi.org/10.1090/S0002-9904-1962-10826-X
- MathSciNet review: 0152559