NOTE ON Γ*-SEMIGROUPS

BY TAKAYUKI TAMURA

Communicated by Edwin Hewitt, February 20, 1962

The system \(L(S) \) of all nonvoid subsemigroups of a semigroup \(S \) is generally a semilattice\(^1\) with respect to the inclusion relation. \(L(S) \) is called the subsemigroup semilattice of \(S \). In the previous paper \([1]\) we determined all the \(\Gamma \)-semigroups,\(^2\) i.e., the semigroups whose subsemigroup semilattices are chains. In detail, all the types of \(\Gamma \)-semigroups are

\[
\begin{align*}
(1.1) & \text{ cyclic groups } G(p^n) \text{ of order of prime power,} \\
(1.2) & \text{ quasi-cyclic groups } G(p^n), \\
(1.3) & \text{ unipotent semigroups generated by } d \text{ with each of the following defining relations: } \\
& \quad (1.3.1) \ d^2 = d^3, \\
& \quad (1.3.2) \ d^3 = d^4, \\
& \quad (1.3.3) \ d^2 = d^{p^{m+2}}, \ p \text{ prime,} \\
& \quad (1.3.4) \ d^3 = d^{p^{m+3}}, \ p \text{ prime } \neq 2.
\end{align*}
\]

In the present note, we shall define \(\Gamma^* \)-semigroups as generalizations of \(\Gamma \)-semigroups and shall report the structure of \(\Gamma^* \)-semigroups except for a part of infinite \(\Gamma^* \)-groups. The proof will be omitted here but will be given elsewhere.\(^3\)

DEFINITION. A semigroup \(S \) is called a \(\Gamma^* \)-semigroup if every subsemigroup different from \(S \) is a \(\Gamma \)-semigroup.

\(S \) is a \(\Gamma^* \)-semigroup if and only if \(L(S) \) is a semilattice satisfying:

Any subset which contains the greatest element is a subsemilattice.

A semilattice of this kind is called a \(C_0 \)-semilattice. Obviously all the semigroups of order 2 are \(\Gamma^* \)-semigroups, and a homomorphic image of a \(\Gamma^* \)-semigroup is also a \(\Gamma^* \)-semigroup.

LEMMA 1. Every element of a \(\Gamma^* \)-semigroup is of finite order, that is, for any element \(x \) there is an idempotent \(e \) and a positive integer \(n \) such that \(x^n = e \).

LEMMA 2. A \(\Gamma^* \)-semigroup of order \(>2 \) is unipotent. (i.e., an idempotent element is unique).

Generally a unipotent semigroup any element of which is of finite

\(^1\) By a semilattice we mean a partially ordered set in which there is a join of two elements.

\(^2\) In \([1]\) we called them \(\Gamma \)-monoids.

\(^3\) *Semigroups and their subsemigroups semilattices*, to appear.
order is determined by a group and a \(\Gamma \)-semigroup (i.e., a unipotent semigroup with zero) [2; 3]. By Lemmas 1 and 2, we can make the discussion proceed to \(\Gamma^* \)-\(Z \)-semigroups, \(\Gamma^* \)-groups, and then to the general cases.

Theorem 1. Any \(\Gamma^* \)-\(Z \)-semigroup is of order \(\leq 4 \). All the types of \(\Gamma^* \)-\(Z \)-semigroups other than \(\Gamma \)-semigroups are listed as follows:

1. {0, \(a \), \(b \)} of order 3 where \(xy = 0 \) for all \(x, y \),
2. {0, \(a \), \(b \), \(c \)} of order 4 defined as
 - (2.2.1) \(b^2 = c^2 = a \) and other products = 0.
 - (2.2.2) \(b^2 = cb = c^2 = a \) and other products = 0.
 - (2.2.3) \(b^2 = c^2 = bc = cb = a \), and other products = 0.

As far as the \(\Gamma^* \)-groups are concerned, we shall limit ourselves to the case of \(\Gamma^* \)-groups which are properly homomorphic to \(\Gamma \)-groups.

We can prove that any \(\Gamma^* \)-group which is properly homomorphic to a \(\Gamma \)-group has a normal subgroup of index of a prime number. Making use of the theory of finite groups [4; 5; 6], we have

Theorem 2. Any \(\Gamma^* \)-group, which is not a \(\Gamma \)-group and is homomorphic to a \(\Gamma \)-group of order \(> 1 \), has one of the following types.

1. The groups of order \(pq \) where \(p \) and \(q \) are different primes.
2. The elementary abelian group: \(G(p) \times G(p) \).
3. The generalized quaternion group of order 8.

Incidentally a finite \(\Gamma^* \)-group, which is not a \(\Gamma \)-group, is homomorphic to a \(\Gamma \)-group; a commutative \(\Gamma^* \)-group which is not a \(\Gamma \)-group is the direct product of two groups of prime order. Consequently we see that the result of Theorem 2 includes the cases where a \(\Gamma^* \)-group is homomorphic to a nontrivial finite group or a commutative group. However the problem of determination of the remaining case is still open.

Next, let \(S \) be a unipotent \(\Gamma^* \)-semigroup which is neither a group nor a \(Z \)-semigroup. Then we can prove that \(S \) must be finite. The kernel (i.e., the least ideal) of \(S \) is of type \(G(p^n) \), and the difference semigroup \(D \) of \(S \) modulo \(G(p^n) \), due to Rees [7] is a \(Z \)-semigroup which has one of the types (1.3.1), (2.1), (2.2.1), (2.2.2), (2.2.3).

Let \(e \) be the unique idempotent of \(S \), and let \(d \) be a generator of \(D \). \(G(p^{n-1}) \) will denote the subgroup of order \(p^{n-1} \) of \(G(p^n) \).

Theorem 3. When \(G(p^n) \) is given, we can determine all the unipotent \(\Gamma^* \)-semigroups, non \(\Gamma \)-semigroups, whose kernel is \(G(p^n) \), by the product of \(e \) and \(d \) in the following way.
NOTE ON Γ*-SEMIGROUPS

(4.1) In the case D of order 2, \(S = G(p^n) \cup \{d\}, n \neq 0, \)
\[ed \in G(p^{n-1}) - G(p^{n-2}). \]

(4.2) In the case D of order 3, D is of type (2.1) and \(S = G(p^n) \)
\[\cup \{d_1, d_2\}, n \neq 0. \]

(4.2.1) \(ed_1 = ed_3 \in G(p^n) - G(p^{n-1}), \)
(4.2.2) \(p^n \neq 2, ed_1 \neq ed_3; ed_1, ed_3 \in G(p^n) - G(p^{n-1}). \)

(4.3) In the case D of order 4, \(S = G(p^n) \cup \{d_1, d_2, d_3\}, d_2 = d_3 = d_1, \)
\[n \neq 0, p \neq 2. \]

(4.3.1) D of (2.2.1) \[ed_2 = ed_3 \in G(p^n) - G(p^{n-1}). \]
(4.3.2) D of (2.2.2) \[D of (2.2.3) \]

According to the above-mentioned theorems, we see that if \(S \) is a
finite Γ*-semigroup, the finite \(C_0 \)-semilattice \(L(S) \) satisfies Jordan-
Dedekind condition (or J-condition cf. [8]). Generally a finite \(C_0 \)-
semilattice \(K \) satisfying J-condition is called a \(C_0J \)-semilattice. Let \(\delta \) denote the dimension of \(K \) (cf. [8]), \(\lambda \) the breadth, i.e., the number
of the maximal chains in \(K \), and \(\mu \) the order, i.e., the number of ele­
ments of \(K \).

\[\begin{array}{ll}
\text{Γ-Semigroups} & \text{Idempotent Semi-} \\
(2.1), (3.1) & \text{groups of order 2} \\
(2.2) & \\
\end{array} \]

Theorem 4. A finite \(C_0J \)-semilattice \(K \) is isomorphic to certain \(L(S) \)
for some finite Γ*-semigroup \(S \) if and only if \(\delta, \lambda, \) and \(\mu \) satisfy the fol­
lowing conditions.

(5.1) \(\delta + \lambda - \mu = 0, \)
(5.2) \(\lambda = \alpha + 1 \) where \(\alpha = 0 \) or 1 or any prime number,

\[A - B \] denotes the set of elements of \(A \) which are not in \(B. \]
if \(\lambda = 1 \) or 2, then \(\delta \) can be taken as an arbitrary positive integer,

if \(\lambda = 3 \), then \(\delta = 2 \) or 3,

if \(\lambda = p + 1 \), \(p \) being a prime number > 2, then \(\delta = 2 \).

Finally we shall show the diagrams of \(L(S) \) for a finite \(\Gamma^* \)-semigroup \(S \).

References