A DUALITY THEORY FOR CONVEX PROGRAMS
WITH CONVEX CONSTRAINTS

BY A. CHARNES, W. W. COOPER AND K. KORTANEK

Communicated by Edwin Hewitt, April 15, 1962

The existence of a solution to the problem of minimizing a convex function subject to restriction of the variables to a closed convex set in \(n \)-space ("convex programming") has been characterized (for suitable differentiability conditions) by the Kuhn-Tucker theorem [5]. In general, no dual programming problem (not involving the variables of the direct problem) has been associated with this situation except in the linear programming case, and very recently by E. Eisenberg in [3], for homogeneity of order one in the function and linear inequality constraints, and by R. J. Duffin [2] in an inverse manner for a highly specialized problem.

Starting with a little known paper of A. Haar [4] in the light of current linear programming constructs (e.g., "regularization" [1]), we effect a generalization of these ideas (with maximal finite algebra and minimal topology) so that a dual theory practically as straightforward as linear programming theory is obtained, and which includes a dual theorem covering the most general convex programming situation (e.g. no differentiability conditions qualifying the convex function or constraints, or homogeneity, etc.).

This general theorem is made possible by associating a suitably restricted, usually infinite-dimensional space problem with the minimization problem in \(n \)-space instead of the usual association of another finite \(m \)-space problem. The space we use is a "generalized finite sequence space" (g.f.s.s.), defined with respect to an index set \(I \) of arbitrary cardinality as the vector space, \(S \), of all vectors \(\lambda = [\lambda_i: i \in I] \) over an ordered field \(F \) with only finitely many nonzero entries.

Such spaces possess the following key characteristics for linear programming of ordinary \(n \)-spaces. Let \(V \) be a vector space over \(F \) and consider a collection of vectors: \(P_0, P_1; i \in I \) in \(V \). Let \(R \) be the subspace spanned by these vectors, and let

\(^1\) The research of A. Charnes and K. Kortanek at Northwestern University has been supported by O.N.R. contract Nonr-1228(10); that of W. W. Cooper at Carnegie Institute of Technology has been supported by O.N.R. contract Nonr-760(01). Reproduction in whole or in part is permitted for any purpose of the United States Government.
\[\Lambda = \left\{ \lambda \in S : \sum_{i \in I} \lambda_i P_i = P_0, \lambda \geq 0 \right\}. \]

Clearly \(\Lambda \) is convex in \(S \) and we have (assuming \(V \) finite-dimensional):

Theorem 1. \(\lambda \neq 0 \) is an extreme point of \(\Lambda \) in \(S \) if and only if the nonzero coordinates of \(\lambda \) correspond to coefficients of linearly independent vectors in \(R \).

Theorem 2. \(\Lambda \) is generated by its extreme points if and only if for any \(x \in S, x \neq 0, \sum_{i \in I} \alpha_i P_i = 0 \) implies some \(\alpha_r \) and some \(\alpha_s \) are of opposite signs.

Remark. \(\Lambda \) need not be bounded as in \(n \)-space. ("Bounded" means there exists \(M \in F \) such that \(\sum_{i} |\lambda_i| \leq M \) for all \(\lambda \) in the set.)

These theorems can be proved in similar fashion to their finite space forms due respectively to Charnes and to Charnes-Cooper (see [1]).

By "dual semi-infinite programs" we mean the following pair of problems formed from the same data:

\[
\begin{align*}
\text{I} & \quad \min u^T P_0 \\
\text{subject to} & \quad u^T P_i \geq c_i, \; i \in I
\end{align*}
\]

\[
\begin{align*}
\text{II} & \quad \max \sum_{i \in I} c_i \lambda_i \\
\text{subject to} & \quad \sum_{i \in I} P_i \lambda_i = P_0 \\
& \quad \lambda \in S, \lambda \geq 0.
\end{align*}
\]

We restrict ourselves now to the real field and to semi-infinite programs whose \(\{P_i, c_i\} \) are "canonically closed" in the sense that in an equivalent inequality system in which the new \(\{P_i, c_i\} \) form a bounded set, e.g. by dividing each inequality by some \(d_i > 0 \), the set is also closed. We call such programs "dual Haar programs."

We require next the inhomogeneous (inequality system) theorem of Haar [4].

Theorem 3. Let \(u^T P_i \geq c_i, \; i \in I \) be a canonically closed system. If \(u^T P \geq c \) holds whenever \(u^T P_i \geq c_i \) for all \(i \in I \), then there exist \(\lambda_k \geq 0, \lambda_0 \geq 0 \), with at most \(n+1 \) nonzero such that

\[u^T P - c = \sum_{k} \lambda_k (u^T P_k - c_k) + \lambda_0. \]

Haar does not specifically use the notion of canonical closure, but as counter-examples show he must have intended something of this sort. By use of Theorem 3 we obtain the following lemma.
LEMMA 1. For Haar programs if both I and II are consistent, then
$$\inf u^TP_0 = \sup \sum_{i \in I} u^TP_i \lambda_i = \sum_{i \in I} c_i \lambda_1^*$$
for some $\lambda^* \in \Lambda$.

Hence we conclude

THEOREM 4 (EXTENDED DUAL THEOREM). For any pair of dual Haar programs precisely one of the following occurs.

(i) $\sup \sum_{i \in I} c_i \lambda_i = \infty$ and I is inconsistent.
(ii) $\inf u^TP_0 = -\infty$ and II is inconsistent.
(iii) I and II are both inconsistent.
(iv) $\inf u^TP_0 = \sup \sum_{i \in I} c_i \lambda_i^*$ for some $\lambda_i^* \in \Lambda$.

REMARK. Only the Farkas-Minkowski property of Theorem 3 is employed to obtain Theorem 4. Canonical closure is a sufficient but not a necessary condition for this.

To obtain the general convex programming dual theorem, we move the functional into the constraints and replace it with a linear function as follows. Suppose the direct problem is: $\min C(u)$ subject to $G(u) \geq 0$, where $G = (\cdots, G_i(u), \cdots)$ is a finite vector of concave functions which defines the convex set W of the u's. Let $u^TP_i \geq c_i$, $i \in I$ be a system of supports for W, and $z - u^TQ_a \geq d_a$, $a \in A$ be a system of supports for $z - C(u) \geq 0$. Then the direct problem may be rewritten as:

$$\min z, \quad \text{subject to} \quad z - u^TQ_a \geq d_a, \quad u^TP_i \geq c_i, \quad a \in A, \; i \in I.$$

Thus we have

THEOREM 5. Assuming the Farkas-Minkowski property for this system, the extended dual theorem applies to the following dual programs:

$$\begin{align*}
\min z & \quad \max \sum_a d_a \eta_a + \sum_i c_i \lambda_i \\
\text{subject to} \quad z - u^TQ_a & \geq d_a \\
\quad & \quad \sum_a \eta_a = 1 \\
\quad & \quad u^TP_i \geq c_i \\
\quad & \quad - \sum_a Q_a \eta_a + \sum_i P_i \lambda_i = 0 \\
\quad & \quad \eta_a, \lambda_i \geq 0.
\end{align*}$$

Complete generality may now be obtained since an arbitrary semi-infinite program may be replaced by a Haar program according to the following observation:

THEOREM 6. The canonical closure $u^TP_i \geq c_i$, $i \in \mathcal{I}$ of the system $u^TP_i \geq c_i$, $i \in I$, has precisely the same set of solutions $\{u\}$, where $\mathcal{I} \supseteq I$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
denotes the increased index set to index limit points of the \((P_i, c_i)\) not indexed by \(I\).

REFERENCES