RESTRICTION OF ISOTopies

BY HERMAN GLUCK

Communicated by Deane Montgomery, August 23, 1962

Let M be a connected and simply connected topological manifold (with or without boundary) and m a fixed point in Int M, the interior of M. Let h_0 and h_1 be two isotopic homeomorphisms of M, each of which leaves m fixed.

It is the object of this note to show that, under these conditions, $h_0/M - m$ and $h_1/M - m$ are isotopic homeomorphisms of $M - m$.

With the standard definition of isotopy, the result follows immediately from the covering homotopy theorem, but with a somewhat more liberal (and frequently more natural) definition of isotopy, the argument is less direct. In fact in this case I can obtain the result only with the aid of the apparently irrelevant assumption that M can support a piecewise linear structure.

The converse question of extending isotopies on a space to isotopies on its one-point compactification has already been answered affirmatively by R. H. Crowell [1] in the much more general setting of locally compact Hausdorff spaces.

1. Definitions. If h_0 and h_1 are homeomorphisms of X onto Y, an isotopy between h_0 and h_1 is a continuous map

$$H: X \times [0, 1] \to Y \times [0, 1]$$

such that

(i) $H(x, 0) = (h_0(x), 0)$ for all $x \in X$,
(ii) $H(x, 1) = (h_1(x), 1)$ for all $x \in X$,
(iii) H/XXt is a homeomorphism of $X \times t$ onto $Y \times t$ for all $t \in [0, 1]$.

It is shown in [1] that if X is a locally compact Hausdorff space, then condition (iii) above implies

(iii') H is a homeomorphism.

H is called a weak isotopy between h_0 and h_1 if H satisfies conditions (i), (ii) and (iii'). Thus if X is locally compact and Hausdorff (in particular, if X is a manifold), an isotopy is also a weak isotopy, so that isotopic homeomorphisms will also be weakly isotopic.

Weak isotopy is an important notion in the study of topological manifolds. For example, the extendability of a homeomorphism de-

1 The author holds a National Academy of Sciences Postdoctoral Research Fellowship.
fined on the boundary of a manifold to a homeomorphism of the whole manifold depends only on the weak isotopy class of the homeomorphism.

If M is a connected topological manifold and m a fixed point in $\text{Int } M$, then $H(M)$ will denote the topological group of homeomorphisms of M under the compact-open topology, and $H(M, m)$ the closed subgroup of homeomorphisms which leave m fixed.

The projection of $M \times [0, 1]$ onto M will be denoted by pr_M. If H is a weak isotopy between two homeomorphisms of (M, m) then the curve

$$\gamma: [0, 1] \to M,$$

defined by $\gamma(t) = pr_M(H(m, t))$, is a closed curve in M based at m, which we call the trace of H.

2. Restriction of isotopies.

Theorem 2.1. Let M be a connected and simply connected topological manifold and m a fixed point in $\text{Int } M$. If h_0 and h_1 are two isotopic homeomorphisms of M, each of which leaves m fixed, then $h_0/M - m$ and $h_1/M - m$ are isotopic homeomorphisms of $M - m$.

Let

$$H: M \times [0, 1] \to M \times [0, 1]$$

be an isotopy between h_0 and h_1, and let

$$h_t: M \to M$$

be the homeomorphism of M defined by

$$H(x, t) = (h_t(x), t).$$

The following facts are well known.

(i) The map $\Gamma: [0, 1] \to H(M)$, defined by $\Gamma(t) = h_t$, is continuous.

(ii) $H(M)$ is a principal bundle over $\text{Int } M$ with fibre and group $H(M, m)$ and projection $p: H(M) \to \text{Int } M$ defined by $p(h) = h(m)$.

Then $\gamma = p\Gamma$, the trace of the isotopy H, is contractible because M is simply connected. Hence by the covering homotopy theorem, Γ' can be deformed into a path Γ' which connects h_0 with h_1 and lies entirely in the fibre $p^{-1}(m) = H(M, m)$. Then

$$H': M \times [0, 1] \to M \times [0, 1],$$

defined by

$$H'(x, t) = (\Gamma'(t)(x), t),$$

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
is an isotopy between \(h_0 \) and \(h_1 \) such that, for all \(t \in [0, 1] \),

\[H'(m, t) = (m, t). \]

Hence \(H'/((M-m) \times [0, 1]) \) is an isotopy between \(h_0/M-m \) and \(h_1/M-m \).

3. **Homma's theorem.** Homma [2] has recently proved the following theorem, in the statement of which, \(U_\varepsilon(\bar{P}^k) \) denotes the set of points whose distance from \(\bar{P}^k \) is less than \(\varepsilon \).

HOMMA’S THEOREM. Let \(M^n, \bar{M}^n \) and \(\bar{P}^k \) be two finite combinatorial \(n \)-manifolds and a finite polyhedron such that \(\bar{M}^n \) is topologically embedded in \(M^n \), \(\bar{P}^k \) is piecewise linearly embedded in \(\text{Int} \bar{M}^n \) and \(2k+2 \leq n \). Then for any \(\varepsilon > 0 \), there is an \(\varepsilon \)-homeomorphism \(F \) of \(M^n \) onto \(M^n \) such that

\[F/M^n - U_\varepsilon(\bar{P}^k) = 1, \]

\[F/\bar{P}^k \text{ is piecewise linear}. \]

Combining the reciprocal approximation technique employed by Homma to prove the above theorem with Lemma 2 of [2], one easily obtains the following result, which may be regarded as an indirect corollary to Homma’s theorem.

THEOREM 3.1. Let \(M^n \) be a topological \(n \)-manifold with boundary \(B^{n-1} \). Let \(M_1^n \) and \(M_2^n \) be two combinatorial \(n \)-manifolds, each of which has \(M^n \) for underlying space. Let \(P_1 \) be a polygonal arc in \(M_1^n \) which meets \(B_1^{n-1} \) only at its endpoints. If \(n \geq 4 \), then for any \(\varepsilon > 0 \) there is an \(\varepsilon \)-homeomorphism \(F: M_1^n \to M_2^n \) such that

\[F/M_1^n - U_\varepsilon(P_1) = 1, \]

\[F/B_1^{n-1} = 1, \]

\(F/P_1 \) is piecewise linear.

4. **Restriction of weak isotopies.**

THEOREM 4.1. Let \(M \) be a connected and simply connected topological manifold which can support a piecewise linear structure, and \(m \) a fixed point in \(\text{Int} M \). If \(h_0 \) and \(h_1 \) are two weakly isotopic homeomorphisms of \(M \), each of which leaves \(m \) fixed, then \(h_0/M-m \) and \(h_1/M-m \) are weakly isotopic homeomorphisms of \(M-m \).

Since \(M \) can support a piecewise linear structure, triangulate \(M \times [0, 1] \) as a combinatorial manifold in which \(m \times [0, 1] \) appears as a subcomplex. Let
be a weak isotopy between \(h_0 \) and \(h_1 \). The plan is to first find a homeomorphism \(F \) of \(M \times [0,1] \) onto itself such that
\[
F/(M \times 0) \cup (M \times 1) = 1,
\]
\[
FH(m \times [0,1]) \text{ is polygonal},
\]
and then a homeomorphism \(F' \) of \(M \times [0,1] \) onto itself such that
\[
F'/(M \times 0) \cup (M \times 1) = 1,
\]
\[
F'FH(m \times [0,1]) = m \times [0,1].
\]
Then \(F'FH \) will be a weak isotopy of \(h_0 \) with \(h_1 \) which takes \(m \times [0,1] \) onto itself, and hence \(F'FH/(M-m) \times [0,1] \) will be a weak isotopy of \(h_0/M-m \) with \(h_1/M-m \).

If \(\dim M = 1 \), \(M \) is homeomorphic to an open, half-closed or closed arc, and the theorem is trivially true.

If \(\dim M = 2 \), suppose first that \(M \) is homeomorphic to \(S^2 \). The existence of both \(F \) and \(F' \) is demonstrated in §9 of [3]. If \(M \) is not homeomorphic to \(S^2 \), then \(\text{Int} M \) is homeomorphic to Euclidean 2-space, \(\mathbb{R}^2 \). The existence of \(F \) is shown in §9 of [3], while the existence of \(F' \) follows from a standard argument involving Dehn’s lemma [4] and the fact that an orientation preserving homeomorphism of a 2-sphere is isotopic to the identity.

If \(\dim M \geq 3 \), let \(M^a \) be \(M \times [0,1] \) triangulated as above, and let \(M^a_1 \) be \(M \times [0,1] \) with the triangulation induced from \(M^a_2 \) by the homeomorphism \(H \). Since \(m \times [0,1] \) appears as a subcomplex of \(M^a_2 \), \(H(m \times [0,1]) \) appears as a subcomplex of \(M^a_1 \). Letting \(P_1 = H(m \times [0,1]) \), the existence of \(F \) is assured by Theorem 3.1.

Since \(M \times [0,1] \) is simply connected, the polygonal arc \(FH(m \times [0,1]) \) is homotopic to the polygonal arc \(m \times [0,1] \) in \(M \times [0,1] \). Since \(\dim (M \times [0,1]) \geq 4 \), a general position argument will produce \(F' \).

5. An application. Think of \(S^n \) as the one-point compactification of \(\mathbb{R}^n \) by the point \(\infty \). Then the following may be regarded as a corollary to Theorem 4.1.

Theorem 5.1. If \(h \) is a homeomorphism of \((S^n, \infty) \) which is weakly isotopic to the identity, then \(h/\mathbb{R}^n \) is weakly isotopic to the identity homeomorphism of \(\mathbb{R}^n \).

For the theorem is trivial when \(n = 1 \) and \(S^n \) is simply connected when \(n > 1 \).
Now let \(h \) be a homeomorphism of \((S^n, \infty)\), and from \(S^n \times [0, 1] \) form a space \(M \) by identifying \((x, 0)\) with \((h(x), 1)\) for each \(x \in S^n \). Let \(\phi: S^n \times [0, 1] \rightarrow M \) be the decomposition map.

Theorem 5.2. If \(M \) is homeomorphic to \(S^n \times S^1 \), then \(\phi(R^n \times [0, 1]) \) is homeomorphic to \(R^n \times S^1 \).

If \(M \) is homeomorphic to \(S^n \times S^1 \), then it follows from [5] that \(h \) must be weakly isotopic to the identity. By the preceding theorem, \(h/R^n \) must also be weakly isotopic to the identity, from which it easily follows that \(\phi(R^n \times [0, 1]) \) is homeomorphic to \(R^n \times S^1 \).

6. **Further results.** Theorem 2.1 is actually a special case of a more general result, which is briefly described below.

Let \(M \) be a connected manifold and \(m \in \text{Int } M \). Let \(h \) be a homeomorphism of \(M \) leaving \(m \) fixed, which is isotopic to the identity homeomorphism, \(1_M \). Define the **trace class**, \(\tau(h) \), to be the set of all elements of \(\pi_1(M, m) \) which can be represented by traces of isotopies of \(1_M \) with \(h \). Then \(\tau(1_M) \) is a central (and hence normal) subgroup of \(\pi_1(M, m) \), and \(\tau(h) \) is a coset of \(\tau(1_M) \). Thus \(\tau(h) \) may also be regarded as an element of the **trace group**

\[
T(M, m) = \pi_1(M, m)/\tau(1_M).
\]

Now, if \(h_0 \) and \(h_1 \) are isotopic homeomorphisms of \(M \), each of which leaves \(m \) fixed, then \(h_0^{-1}h_1 \) is isotopic to \(1_M \), hence \(\tau(h_0^{-1}h_1) \) is defined. It then follows easily from the covering homotopy theorem applied to the bundle \(H(M) \) over \(\text{Int } M \) that \(h_0/M - m \) and \(h_1/M - m \) are isotopic homeomorphisms of \(M - m \) if and only if \(\tau(h_0^{-1}h_1) = \tau(1_M) \).

This condition is automatically satisfied when \(M \) is simply connected, hence Theorem 2.1.

Theorem 4.1 follows from a similar result about weak isotopy.

References

The Institute for Advanced Study