THE NUMBER OF SOLUTIONS OF A TRINOMIAL CONGRUENCE INVOLVING A kTH POWER AND A SQUARE

BY J. T. CROSS

Communicated by G. B. Huff, September 28, 1962

Let K denote a finite extension of the rational number field and D the domain of algebraic integers of K. Let P be a prime ideal of D having norm $N(P) = p^h q^t$, where h is a positive integer and p is an odd rational prime number. This announcement is concerned with the number of solutions of the trinomial congruence,

$$X^k + \alpha Y^2 \equiv \rho \pmod{P^r},$$

where α and ρ are in D with ρ arbitrary and $(\alpha, P) = 1$, r is a positive integer, k is a positive integer such that $(k, p) = 1$, and $d = (k, q-1) > 1$. Let C denote an ideal of D such that $(P, C) = 1$ and $PC = (\theta)$ is principal, and let b be the greatest integer n such that $0 \leq n \leq r$ and $P^n | \rho$. Then we may put

$$\rho \equiv \eta^b \pmod{P^r}, \quad (\eta, P) = 1,$$

where η is uniquely determined $\pmod{P^{r-b}}$ if $b < r$.

In Theorems 1–8 we give formulas for the number $Q_r(\rho)$ of solutions of (1). Solvability criteria are obtained as corollaries of these theorems. (We remark that if $\rho \equiv 0 \pmod{P^r}$, then (1) has the trivial solution $(0, 0)$.) The formulas given in this note follow directly from more general theorems proved for congruences $\pmod{P^r}$ involving a kth power and an arbitrary number of squares [2].

If $r = 1$, the congruence (1) amounts to an equation in a Galois field of order q. For discussions of general trinomial congruences in a finite field, particular reference is made to Vandiver [7] who has published several pertinent papers in recent years. A number of authors have considered the special case of (1) with $r = 1$ and K the rational field; in particular we mention Frattini [3], E. Lehmer [5], and Manin [6]. For a discussion of trinomial congruences in algebraic number fields, see Cohen’s paper [1].

We need the following notation:

$$b = Lk + I \quad (0 \leq I < k); \quad \zeta = (\alpha/P), \quad \tau = (-\eta/P),$$

where (β/P) denotes the Legendre symbol in D.

Let $Q(\eta) = Q_i(\eta)$ denote the number of solutions of

$$X^k + \alpha Y^2 \equiv \eta \pmod{P}, \quad (\eta, P) = 1.$$
Theorems 1–4 and 7–8 below contain explicit formulas for the number of solutions of (1), while Theorems 5 and 6 are reduction formulas which give the number of solutions of (1) in terms of the number of solutions of (4). Theorems 5 and 6 apply if \(d > 2, \rho \not\equiv 0 \pmod{P}, b \equiv 0 \pmod{k}, \) and \(bk \) is even; under these conditions it is not possible to give explicit formulas for \(Q_r(p) \). Davenport and Hasse [4] have shown that \(Q(\eta) \geq q - (d-1)\sqrt{q} \), a result which we utilize in Corollary 7.

Theorem 1. If \(k \) is odd and \(r > b \not\equiv 0 \pmod{k} \), then \(Q_r(p)/(q^{r-1}) = (q-1)(q^{(k/2-1)L+b-2}-1) \) for \(L \) even, \(I \) odd or for \(L \) even, \(I \) even, \(r = -1; (q-1)(q^{(k/2-1)L+b-2}-1) + 2(q^{k-2}-1)q^{(k/2-1)L+1/2} \) for \(L \) even, \(I \) even, \(r = 1; (q-1)(q^{(k/2-1)}(L+1)-1) \) for \(L \) odd, \(I \) even, or for \(L \) odd, \(I \) odd, \(r = -1; -q-1q^{(k/2-1)}(L+1)-1 + 2(q^{k-2}-1)q^{(k/2-1)L+1/2} \) for \(L \) odd, \(I \) odd, \(r = 1.

Corollary 1. If \(k \) is odd and \(b \not\equiv 0 \pmod{k} \), then (1) is solvable.

Theorem 2. If \(k = 2 \) and \(r > b \not\equiv 0 \pmod{2} \), then \(Q_r(p)/(q^{r-1}) = 0 \) for \(\zeta = -1; 2(q-1)(L+1) \) for \(\zeta = 1. \) If \(k \) is even, \(k > 2, \) and \(r > b \not\equiv 0 \pmod{k} \), then \(Q_r(p)/(q^{k/2-1}-1)/q^{r-1} = 0 \) for \(I \) odd, \(\zeta = -1, \) or for \(I \) even, \(\zeta = -1 = -\tau; 2(q-1)(q^{(k/2-1)}(L+1)-1) \) for \(I \) odd, \(\zeta = 1, \) or for \(I \) even, \(\zeta = 1 = -\tau; 2q^{(k/2-1)I+1/2}(q^{k/2-1}-1) \) for \(I \) even, \(\zeta = 1 = -\tau; +2q^{(k/2-1)I+1/2}(q^{k/2-1}-1) \) for \(I \) even, \(\zeta = -1 = -\tau.

Corollary 2. If \(k \) is even and \(r > b \not\equiv 0 \pmod{k} \), then (a) If \(I \) is odd, the congruence (1) is insolvable \(\equiv \zeta < -1 \). (b) If \(I \) is even, the congruence (1) is insolvable \(\equiv \zeta < -1 = -\tau.

Theorem 3. If \(k = 2 \) and \(r > b \equiv 0 \pmod{2} \), then \(Q_r(p)/(q^{r-1}) = (q-1)(1+2L) \) for \(\zeta = 1; q+1 \) for \(\zeta = -1. \) If \(d = 2 < k \) and \(r > b \equiv 0 \pmod{k} \), then

\[
Q_r(p)(q^{k/2-1}-1)/q^{r-1} = (q-1)(q^{(k/2-1)}(L+1) + q^{(k/2-1)L-2})
\]

for \(\zeta = 1; (q+1)q^{(k/2-1)L(q^{(k/2-1)}L-1)} \) for \(\zeta = -1.

Corollary 3. If \(d = 2 \) and \(b \equiv 0 \pmod{k} \), then (1) is solvable.

Theorem 4. If \(k \) is odd, \(b \) is odd and \(r > b \equiv 0 \pmod{k} \), then \(Q_r(p)/(q^{k-2}-1)/q^{r-1} = (q-1)(q^{(k/2-1)}L+1-1) \) for \(\eta \) not a \(k \)th power (mod \(P \)); \((q-1)(q^{(k/2-1)}L+1-1) + dq^{(k/2-1)L+1/2}(q^{k-2}-1) \) for \(\eta \) a \(k \)th power (mod \(P \)).

Corollary 4. If \(k \) is odd, \(b \) is odd, and \(b \equiv 0 \pmod{k} \), then (1) is solvable.
THEOREM 5. If \(k \) is even, \(d > 2 \), and \(r > b \equiv 0 \pmod{k} \), then \(Q_r(\rho)/q^{r-1} = q^{(k/2-1)LQ(\eta)} \) for \(\zeta = -1 \) and

\[
Q_r(\rho)(q^{k/2-1} - 1)/q^{r-1} = q^{(k/2-1)/L}\left\{q^{k/2} + q - 2 + (Q(\eta) - q) \cdot (q^{k/2-1} - 1)\right\} - 2(q - 1)
\]

for \(\zeta = 1 \).

COROLLARY 5. If \(k \) is even, \(d > 2 \), and \(r > b \equiv 0 \pmod{k} \), then

(a) If \(\zeta = -1 \), \(Q_r(\rho) = 0 \), \(Q(\eta) = 0 \).
(b) If \(\zeta = 1 \), \(Q_r(\rho) = 0 \), \(Q(\eta) = 0 \) and \(L = 0 \).

THEOREM 6. If \(k \) is odd, \(b \) is even and \(r > b \equiv 0 \pmod{k} \), then

\[
Q_r(\rho)(q^{k/2-1} - 1)/q^{r-1} = 1 - q + q^{(k/2-1)L}\left\{q^{k/2} - 1 + (Q(\eta) - q)(q^{k/2-1} - 1)\right\}.
\]

COROLLARY 6. If \(k \) is odd, \(b \) is even, and \(r > b \equiv 0 \pmod{k} \), then \(Q_r(\rho) = 0 \), \(Q(\eta) = 0 \) and \(L = 0 \).

Since \(Q(\eta) \geq q - (d - 1)\sqrt{q} \), one obtains from Corollaries 5 and 6,

COROLLARY 7. If \(d > 2 \), \(bk \) is even, and \(r > b \equiv 0 \pmod{k} \), then (1) is solvable if \(q > (d - 1)^2 \); moreover, (1) is solvable for arbitrary \(q \) if \(L \neq 0 \) and \(k \) is odd, or if \(L = 0 \) and \(\zeta = 1 \).

For completeness, the following formulas in the case \(b = r \pmod{(p)} \) are also included.

THEOREM 7. If \(k = 2 \) and \(b = r \), then \(Q_r(\rho)/q^{r-1} = q + (q-1)r \) for \(\zeta = 1 \);

\[
\begin{align*}
q &\text{ for } \zeta = -1, r \text{ even}; \ 1 \text{ for } \zeta = -1, r \text{ odd. If } k \text{ is even, } k > 2 \text{ and } b = r, \text{ then } \\
Q_r(\rho)/q^{r-1} &\equiv q^{(k/2-1)L+1} \text{ for } I = 0, \zeta = -1; \\
&\equiv q^{(k/2-1)L}(q^{k/2} + q - 2) - 2(q - 1) \left/(q^{k/2-1} - 1\right) \text{ for } I = 0, \zeta = 1; \\
&\equiv q^{(k/2-1)L}(q^{k/2} + q - 2) - 2(q - 1) \left/(q^{k/2-1} - 1\right) + q^{(k/2-1)L}(q^{k/2} + q - 2) - 2(q - 1) \left/(q^{k/2-1} - 1\right) + q^{(k/2-1)L}(q^{k/2} + q - 2) - 2(q - 1) \left/(q^{k/2-1} - 1\right) \text{ for } I \text{ even, } I > 0, \zeta = 1; \\
&\equiv q^{(k/2-1)L}(q^{k/2} + q - 2) - 2(q - 1) \left/(q^{k/2-1} - 1\right) + q^{(k/2-1)L}(q^{k/2} + q - 2) - 2(q - 1) \left/(q^{k/2-1} - 1\right) + q^{(k/2-1)L}(q^{k/2} + q - 2) - 2(q - 1) \left/(q^{k/2-1} - 1\right) \text{ for } I \text{ odd, } \zeta = 1.
\end{align*}
\]

THEOREM 8. If \(k \) is odd and \(b = r \), then

\[
Q_r(\rho)/q^{r-1} = \left\{q^{(k/2-1)L}(q^{k/2-1} - 1) - q + 1\right\} / (q^{k/2-1} - 1) + q^{(k/2-1)L}(q^{k/2} - 1) \text{ for } L \text{ even, } I \text{ even;}
\]

\[
\left\{q^{(k/2-1)L}(q^{k/2-1} - 1) - q + 1\right\} / (q^{k/2-1} - 1) + q^{(k/2-1)L}(q^{k/2} - 1) \text{ for } L \text{ even, } I \text{ odd;}
\]

\[
\left\{q^{(k/2-1)L}(q^{k/2-1} + q^{k/2} - q^{k/2-1} - q^{k/2}) - q + 1\right\} / (q^{k/2-1} - 1) \text{ for } L \text{ odd, } I = 0;
\]
\[
\left\{ q^{(k/2-1)L} \left(q^{k/2} - q^{k/2-1} - q^{1/2} \right) - q + 1 \right\} / (q^{k-2} - 1) \\
+ q^{(k/2-1)L+1/2} (q^{J/2-1} - 1) \text{ for } L \text{ odd, } I \text{ even, } I > 0; \\
\left\{ q^{(k/2-1)L} \left(q^{k/2} - q^{k/2-1} - q^{1/2} \right) - q + 1 \right\} / (q^{k-2} - 1) \\
+ q^{(k/2-1)L+1/2} (q^{J-1/2} - 1) \text{ for } L \text{ odd, } I \text{ odd.}
\]

We now apply the formulas to a few examples, letting \(K \) be the rational field. \(X^3 + Y^2 = 2 \cdot 7^3 \pmod{7^4} \) has 2,058 solutions by Theorem 4; \(X^4 + 2Y^2 = 25 \pmod{125} \) has no solutions by Corollary 2; \(X^4 + Y^2 = 3 \cdot 5^4 \pmod{5^6} \) has 5,000 solutions by Theorem 5; \(X^6 + Y^2 = 6 \cdot 7^6 \pmod{7^7} \) has no solutions by Corollary 5.

BIBLIOGRAPHY

5. Emma Lehmer, *On the number of solutions of \(u^h + D = w^2 \pmod{p} \)*, Pacific J. Math. 5 (1955), 103–118.

The University of Tennessee and The University of the South