STABLE HOMEOMORPHISMS CAN BE APPROXIMATED
BY PIECEWISE LINEAR ONES

BY E. H. CONNELL

Communicated by Deane Montgomery, August 23, 1962

A homeomorphism h of E^n or S^n onto itself is stable if \exists homeomorphisms h_1, h_2, \ldots, h_m and nonvoid open sets U_1, U_2, \ldots, U_m such that $h = h_mh_{m-1}\cdots h_1$ and $h_i\big|_{U_i} = I$ for $i = 1, 2, \ldots, m$. All orientation preserving homeomorphisms of E^n or S^n are stable provided $n = 1, 2, \text{ or } 3$. There is no example known in any dimension of an orientation preserving homeomorphism which is not stable. In fact, the conjecture that all orientation preserving homeomorphisms of E^n or S^n are stable is equivalent to the annulus conjecture (see [3]).

It is known that any homeomorphism of E^n onto itself can be approximated by a piecewise linear one (see [2] or [6]). The purpose of this paper is to announce that if $n \geq 7$ and h is a stable homeomorphism of E^n or S^n onto itself, then h can be approximated by a piecewise linear homeomorphism, and also, in the case of E^n, by a diffeomorphism.

The set of all homeomorphisms on E_n or S_n forms a group under composition and the subset of stable homeomorphisms forms a normal subgroup. The stable group on S_n is simple while the stable group on E_n is not. Due to this fact, there is a shorter proof in the case of S_n than in the case of E_n, and it is this proof which will be outlined here. The author thanks John Stallings for his assistance.

NOTATION. E_n is Euclidean n-space, S_{n-1} is the unit sphere in E_n, and O_n is the open unit ball in E_n. Thus $O_n \cup S_{n-1} = \overline{O_n}$. For a given integer n, O_n will usually be denoted by O. If $U \subseteq E_n$ and $a > 0$, $aU = \{ x \in E_n : \exists y \in U \text{ such that } x = ay \}$. $C(aU)$, the compliment of aU, will be denoted by Ua. Thus, for a given n, aO will be the canonical open ball in E_n of radius a. If $x, y \in E_n$, $|x - y|$ will be the usual distance from x to y. If O is the origin and $x \neq O \neq y$, then $\theta \{ x, y \}$ will represent the angle in radians between the two line intervals, one joining O to x and the other joining O to y. Thus $0 \leq \theta \{ x, y \} \leq \pi$. A piecewise linear structure (p.w.l. structure) or combinatorial structure on an open subset of E_n or S_n is a triangulation such that the star of each vertex is a combinatorial cell (see §3 of [10]). The identity function will be denoted by I.

The results of this paper are based primarily on Lemma 1 below, a modification of the Engulfing Lemma (see §3.4 of [10]). The proof is omitted.
Lemma 1. Suppose \(E_n (n \geq 4) \) has an arbitrary p.w.l. structure \(T \), \(K \) is a finite subcomplex of \(T \), \(\dim K \leq n - 4 \), \(a \), \(b \), and \(\epsilon \) are nos. with \(0 < a < b \), \(\epsilon > 0 \) and \(K \subset bO = bO_n \). Then \(\exists \) a homeomorphism \(h: E_n \rightarrow E_n \) such that \(h \) is p.w.l. relative to \(T \), \(h| (a - \epsilon)O = I \), \(h| (b + \epsilon)O = I \), \(h(aO) \supset K \) and \(\theta\{h(x), x\} < \epsilon \) for \(x \in E_n \).

The proof of Lemma 2 below follows from Lemma 1 and trivial modifications of §4 of [10] and §8.1 of [11]. The proof is omitted.

Lemma 2. Suppose \(E_n (n \geq 7) \) has an arbitrary p.w.l. structure \(T \), and \(a \), \(b \), and \(\epsilon \) are nos. with \(0 < a < b \) and \(\epsilon > 0 \). Then \(\exists \) a homeomorphism \(h: E_n \rightarrow E_n \) such that \(h \) is p.w.l. relative to \(T \), \(h| (a - \epsilon)O = I \), \(h| (b + \epsilon)O = I \), \(h(aO) \supset K \) and \(\theta\{h(x), x\} < \epsilon \) for \(x \in E_n \).

Definition. A homeomorphism \(h: S_n \rightarrow S_n \) is said to have property \(P \) if for any p.w.l. structure \(T \) on \(S_n \) and any \(\epsilon > 0 \), \(\exists \) a homeomorphism \(f: S_n \rightarrow S_n \) such that \(f \) is p.w.l. relative to \(T \) and \(|h(x) - f(x)| < \epsilon \) for \(x \in S_n \). Let \(G_n \) be the set of all homeomorphisms on \(S_n \) which possess property \(P \).

Observation A. \(G_n \) is a normal subgroup of the group of all homeomorphisms under composition.

Proof. The proof that it is a subgroup is immediate. It will be shown that \(G_n \) is normal. Suppose \(h \in G_n \) and \(g: S_n \rightarrow S_n \) is any homeomorphism. Show that \(g^{-1}hg \in G_n \). Let \(T \) and \(\epsilon \) be given.

There exists a \(\delta > 0 \) such that if \(|x - y| < \delta \), then \(|g^{-1}(x) - g^{-1}(y)| < \epsilon \). Let \(T_1 \) be the p.w.l. structure on \(S_n \) which is the \(g \) image of \(T \), \(T_1 = g(T) \). Thus if \(v \) is a simplex of \(S_n \) in the triangulation \(T \), then \(g(v) \) is a simplex of \(S_n \) in the triangulation \(T_1 \). Since \(h \in G_n \), \(\exists \) a homeomorphism \(f: S_n \rightarrow S_n \) which is p.w.l. relative to \(T_1 \) and with \(|h(x) - f(x)| < \delta \) for \(x \in S_n \). Thus \(|g^{-1}hg(x) - f(x)| < \epsilon \) for \(x \in S_n \). Note that \(g^{-1}fg \) is p.w.l. relative to \(T \) because: \(g \) is p.w.l. from \(T \) to \(T_1 \), \(f \) is p.w.l. from \(T_1 \) to \(T_1 \) and \(g^{-1} \) is p.w.l. from \(T_1 \) to \(T \). This justifies Observation A.

Theorem 1. Let \(T \) be an arbitrary p.w.l. structure on \(S_n (n \geq 7) \) and let \(h: S_n \rightarrow S_n \) be a stable homeomorphism. If \(\epsilon > 0 \), \(\exists \) a homeomorphism \(f: S_n \rightarrow S_n \) such that \(f \) is p.w.l. relative to \(T \) and \(|h(x) - f(x)| < \epsilon \) for \(x \in S_n \).

Proof. The set of all stable homeomorphisms of \(S_n \) is a simple, normal subgroup of the group of all homeomorphisms. The fact that it is a normal subgroup is trivial and the fact that it is simple follows from [1] and is even stated explicitly in Theorem 14 of [4]. Therefore, using Observation A, it will follow that \(G_n \) contains the stable group if \(G_n \) contains some stable homeomorphism distinct from the
identity. This will now be shown.

Let \(h \) be a symmetric radial expansion, i.e., let \(h: E_\mathbb{R}^n \to E_\mathbb{R}^n \) be a homeomorphism such that \(h(x) = x \) for \(||x|| \geq 1 \), \(h(0) = 0 \), \(\theta \{ h(x), x \} = 0 \) for all \(x \), and if \(0 < r < 1 \), \(\exists a \, no. \ u(r), r < u(r) < 1 \) such that \(h[r(0 - O)] = u(r)(0 - O) \). Let \(T \) be any p.w.l. structure on \(E_\mathbb{R}^n \) and \(\varepsilon > 0 \). It will be shown that \(\exists f: E_\mathbb{R}^n \to E_\mathbb{R}^n \) which is a p.w.l. homeomorphism relative to \(T \) and with \(\epsilon(x) = x \) for \(||x|| \geq 1 \) and \(\| h(x) - f(x) \| < \varepsilon \) for \(x \in E_\mathbb{R}^n \). Since \(h \) determines a homeomorphism from \(S_n \) to itself by defining \(\bar{h}(\infty) = \infty \), this will show that \(G_n \) is nontrivial and will complete the proof of Theorem 1.

Let \(\epsilon > \epsilon_0 < r_1 < r_2 \cdots < r_{m+1} = 1 \) be nos. such that \(\{ u(r_{i+2}) - u(r_i) \} < \epsilon/2 \) for \(i = 0, 1, 2, \ldots, (m-1) \). By Lemma 3, \(\exists p.w.l. \) homeomorphisms \(f_1, f_2, \cdots, f_m \) such that \(f_i|_{r_{i-1}O} = I, f_i|_{Ou(r_{i+1})} = I, \theta \{ f_i(x), x \} < \epsilon/4 \) for \(x \in E_\mathbb{R}^n \), and \(f_i(r_iO) \supset u(r_i)O \) for \(i = 1, 2, \cdots, m \). Let \(f = f_1 f_2 \cdots f_m \). Now \(\bar{f} \) is a homeomorphism of \(E_\mathbb{R}^n \) onto \(E_\mathbb{R}^n \) that is p.w.l. relative to \(T \) and \(\| f(x) - h(x) \| < \epsilon \) for \(x \in E_\mathbb{R}^n \). Let \(x \in r_{k+1}O \cap O r_k = r_{k+1}O - r_kO \), \(0 \leq k \leq m \). Then \(f(x) = f_1 f_2 \cdots f_{k+1} \) because \(f_i|_{r_{i+1}O} = I \) for \(i > k+1 \). In fact, \(f(x) = f_1 f_{k+1}(x) \) because \(f_1 f_{k+1}(x) \in Ou(r_k) \) and \(f_1|_{Ou(r_k)} = I \) for \(i < k \). (In the special case \(k = 0 \), \(f(x) = f_1(x) \).) Now since \(f(x) \) and \(h(x) \in u(r_{k+2})O \cap Ou(r_k) \), \(||f(x)|| \) and \(||h(x)|| \) differ by \(\epsilon/2 \). Since \(\theta \{ h(x), f(x) \} < \epsilon/2 \) is measured in radians and any radius under consideration is \(< 1 \), it follows that \(||h(x) - f(x)|| < \epsilon \). This completes the proof.

Theorem 2. Let \(T \) be an arbitrary p.w.l. structure on \(E_\mathbb{R}^n (n \geq 7) \). If \(h: E_\mathbb{R}^n \to E_\mathbb{R}^n \) is a stable homeomorphism and \(\epsilon(x): E_\mathbb{R}^n \to (0, \infty) \) is a continuous function, then \(\exists a \) homeomorphism \(f: E_\mathbb{R}^n \to E_\mathbb{R}^n \) such that \(f \) is p.w.l. relative to \(T \) and \(|f(x) - h(x)| < \epsilon(x) \) for \(x \in E_\mathbb{R}^n \).

Since the stable group on \(E_\mathbb{R}^n \) is not simple, the trick used in the proof of Theorem 1 cannot be used. A direct construction of \(f \) is required. The proof is omitted.

Theorem 3. Suppose \(D \) is any \(C^2 \) differentiable structure on \(E_\mathbb{R}^n (n \geq 7) \). If \(h: E_\mathbb{R}^n \to E_\mathbb{R}^n \) is a stable homeomorphism and \(\epsilon(x): E_\mathbb{R}^n \to E_\mathbb{R}^n \) is a continuous function, then \(\exists a \) homeomorphism \(f: E_\mathbb{R}^n \to E_\mathbb{R}^n \) which is a \(C^2 \) diffeomorphism relative to \(D \) and such that \(|f(x) - h(x)| < \epsilon(x) \) for \(x \in E_\mathbb{R}^n \).

Proof. Let \(T \) be a \(C^2 \) triangulation of \(E_\mathbb{R}^n \) which is compatible with \(D \) (see [5] or [13]). By Theorem 2, \(h \) may be approximated by a homeomorphism \(f_1 \) which is p.w.l. relative to \(T \). Now by Theorems 5.7 and 6.2 of [7], \(f_1 \) may be approximated by a diffeomorphism \(f \). This completes the proof. The theorem remains true if \(C^2 \) is replaced by \(C^\infty \).
It is not clear whether or not Theorem 3 remains true when E_n is replaced by S_n. It is known that E_n and S_n have to be considered as separate cases. For instance, any two differentiable structures on E_n are equivalent (except possibly for $n = 4$) while this is not true on S_n (see [10] and [5] respectively).

Let D_1 and D_2 be two differentiable structures on E_n ($n \geq 7$). Let $h: E_n \to E_n$ be a diffeomorphism mod D_1. Since diffeomorphisms are always stable, according to Theorem 3, h can be approximated by f, a diffeomorphism mod D_2. This type of question might be interesting on S_n. For instance, let $n = 7$ and D_1 be the ordinary differentiable structure on S_7 and D_2 be one of Milnor's bad differentiable structures. Can diffeomorphisms mod D_1 be approximated by diffeomorphisms mod D_2? They can be approximated by p.w.l. ones by Theorem 1.

If T_1 and T_2 are two p.w.l. structures on E_n (or S_n), then any homeomorphism p.w.l. relative to T_1 can be approximated by one p.w.l. relative to T_2. This follows from Theorem 2 (resp. Theorem 1) and the fact that p.w.l. homeomorphisms are stable.

References

2. R. H. Bing, An alternate proof that 3-manifolds can be triangulated, Ann. of Math. (2) 69 (1959), 37–65.