The object of Theorem 1 below is to establish the existence of periodic solutions of an autonomous differential equation \(\dot{y} = f(y) \) by an extension of the Poincaré method of sections (see [2; 4]). The following situation is envisaged: the equation is defined on a subset \(D \) of euclidean space and has unique solutions \(y(x, t) \) jointly continuous in \(t \) and the initial point \(x \); \(D \) contains a compact subset \(K \) with the property that the positive trajectories starting from points of \(K \) remain in \(K \). The assignment to \(x \) in \(K \) and \(t \) in \([0, \infty) \) of the point \(T_t(x) = y(x, t) \) in \(K \) defines a continuous one-parameter semigroup \(T_t \) acting on \(K \), i.e., \(T_t \) is jointly continuous in \(x \) and \(t \), \(T_0 \) is the identity on \(K \) and \(T_{t+s} = T_t \circ T_s \).

Theorem 1. Let \(K \) be a connected finite complex, let \(T_t \) be a continuous one-parameter semigroup acting on \(K \) and let \(\omega \) be a closed 1-form on \(K \) (defined over a portion of euclidean space containing \(K \)) with integer-valued periods. Make the following two assumptions on \(K \), \(T_t \) and \(\omega \):

A. For each \(x \) in \(K \) there is a \(t \) for which the integral of \(\omega \) over the trajectory from \(x \) to \(T_t(x) \) is positive.

B. The classes of closed paths in \(K \) over which the integral of \(\omega \) vanishes form a subgroup of the fundamental group of \(K \). Assume that the corresponding covering space \(K' \) has nonvanishing Euler characteristic.

Conclusion: \(T_t \) has a periodic trajectory, i.e., there is an \(x \) in \(K \) and a period \(p > 0 \) such that \(T_{t+p}(x) = T_t(x) \) for all \(t \geq 0 \).

Remark a. If we denote the integral of \(\omega \) over the trajectory from \(x \) to \(T_t(x) \) by \(\Delta(x, t) \), assumption A implies that there exists a positive constant \(a \) such that \(at < \Delta(x, t) \) for sufficiently large \(t \). Thus \(\Delta(x, t) \) converges uniformly to \(+\infty \). If \(T_t \) is engendered by the differential equation \(\dot{y} = f(y) \), \(\Delta(x, t) \) can be written as the integral with respect to \(t \) of the scalar product \(\omega \cdot f \), evaluated along the trajectory from \(x \) to \(T_t(x) \).

Remark b. Although the covering space \(K' \) is not a finite complex, assumption A implies that \(K' \) has finite Betti numbers, so that its Euler characteristic is defined.

Remark c. The period of the periodic trajectory disclosed by the theorem is bounded by a number depending on the uniform rate of
convergence of $\Delta(x, t)$ to $+\infty$, the periods of ω and the Betti numbers of K'.

By means of the construction outlined in [2], Theorem 1 can be derived from the following theorem.

Theorem 2. Let F be an upper semicontinuous multiple-valued function from a finite complex X into itself. Let the system of endomorphisms F_{*p} of $H_p(X)$, the homology groups of X with real coefficients, be induced by F. Denote by r_p the lowest value to which rank F_{*p} descends as k increases. Then $\sum (-1)^n r_p \neq 0$ implies that F has a periodic point: $x \in F^n(x)$ and the period N does not exceed the larger of $\sum r_{2q}$ and $\sum f_{2q+1}$.

The proof of Theorem 2, using the Lefschetz formula for multiple-valued functions [4; 5] is essentially the same as that of the more special theorem in [1].

The relationships in Theorem 1 are illustrated by the following construction. Let f be any continuous mapping of a connected finite complex X into itself. The mapping cylinder C_f of f, constructed using two copies of X, one for the domain and one for the range of f, can be made into a space K by identifying the two copies. A semigroup T_t acting on K is obtained by moving all points at a uniform rate along the segments from x to $f(x)$. A closed 1-form ω with integer periods can be defined on K which is zero on the subspace X and such that the integral of ω over any segment from x to $f(x)$ is $+1$; ω satisfies assumption A. The covering space K' is then a space obtained by coupling together copies C_n, $-\infty < n < +\infty$, of C_f. For the endomorphism f_{*p} of $H_p(X)$, the integer r_p defined in the statement of Theorem 2 turns out to be the pth Betti number of K', so that by Theorem 2 nonvanishing of the Euler characteristic of K' (assumption B) implies that f has a periodic point and T_t a periodic trajectory.

A proof of Theorem 1 will appear elsewhere.

References

CALIFORNIA INSTITUTE OF TECHNOLOGY