A Harnack inequality for nonlinear equations
HTML articles powered by AMS MathViewer
- by James Serrin PDF
- Bull. Amer. Math. Soc. 69 (1963), 481-486
References
- David Gilbarg, Some local properties of elliptic equations, Proc. Sympos. Pure Math., Vol. IV, American Mathematical Society, Providence, R.I., 1961, pp. 127–141. MR 0133578
- David Gilbarg, Boundary value problems for nonlinear elliptic equations in $n$ variables, Nonlinear Problems (Proc. Sympos., Madison, Wis., 1962) Univ. Wisconsin Press, Madison, Wis., 1963, pp. 151–159. MR 0146506
- D. Gilbarg and James Serrin, On isolated singularities of solutions of second order elliptic differential equations, J. Analyse Math. 4 (1955/56), 309–340. MR 81416, DOI 10.1007/BF02787726 4. O. A. Ladyzhenskaya and N. Uraltseva, Quasi-linear elliptic equations and variational problems with many independent variables, Uspehi Mat. Nauk 16 (1961), 19-92; translated in Russian Math. Surveys 16 (1961), 17-91.
- W. Littman, G. Stampacchia, and H. F. Weinberger, Regular points for elliptic equations with discontinuous coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 17 (1963), 43–77. MR 161019
- Charles B. Morrey Jr., Second order elliptic equations in several variables and Hölder continuity, Math. Z 72 (1959/1960), 146–164. MR 0120446, DOI 10.1007/BF01162944
- Charles B. Morrey Jr., Existence and differentiability theorems for variational problems for multiple integrals, Partial differential equations and continuum mechanics, Univ. Wisconsin Press, Madison, Wis., 1961, pp. 241–270. MR 0121690
- Jürgen Moser, On Harnack’s theorem for elliptic differential equations, Comm. Pure Appl. Math. 14 (1961), 577–591. MR 159138, DOI 10.1002/cpa.3160140329
- H. L. Royden, The growth of a fundamental solution of an elliptic divergence structure equation, Studies in mathematical analysis and related topics, Stanford Univ. Press, Stanford, Calif., 1962, pp. 333–340. MR 0145190
- James Serrin, Dirichlet’s principle in the calculus of variations, Proc. Sympos. Pure Math., Vol. IV, American Mathematical Society, Providence, R.I., 1961, pp. 17–22. MR 0137012
Additional Information
- Journal: Bull. Amer. Math. Soc. 69 (1963), 481-486
- DOI: https://doi.org/10.1090/S0002-9904-1963-10971-4
- MathSciNet review: 0150443