## Lipschitz classes of functions and distributions in $E_n$

HTML articles powered by AMS MathViewer

- by M. H. Taibleson PDF
- Bull. Amer. Math. Soc.
**69**(1963), 487-493

## References

- N. Aronszajn and K. T. Smith,
*Theory of Bessel potentials. I*, Ann. Inst. Fourier (Grenoble)**11**(1961), 385–475 (English, with French summary). MR**143935** - S. Bochner and K. Chandrasekharan,
*Fourier Transforms*, Annals of Mathematics Studies, No. 19, Princeton University Press, Princeton, N. J.; Oxford University Press, London, 1949. MR**0031582** - A.-P. Calderón,
*Lebesgue spaces of differentiable functions and distributions*, Proc. Sympos. Pure Math., Vol. IV, American Mathematical Society, Providence, R.I., 1961, pp. 33–49. MR**0143037**
4. A. P. Calderon, Intermediate spaces and interpolation, Warsaw meeting, September, 1960.
- A. P. Calderón and A. Zygmund,
*Singular integrals and periodic functions*, Studia Math.**14**(1954), 249–271 (1955). MR**69310**, DOI 10.4064/sm-14-2-249-271 - G. H. Hardy and J. E. Littlewood,
*Theorems concerning mean values of analytic or harmonic functions*, Quart. J. Math. Oxford Ser.**12**(1941), 221–256. MR**6581**, DOI 10.1093/qmath/os-12.1.221 - I. I. Hirschman Jr.,
*Fractional integration*, Amer. J. Math.**75**(1953), 531–546. MR**56730**, DOI 10.2307/2372502 - J. L. Lions,
*Sur les espaces d’interpolation; dualité*, Math. Scand.**9**(1961), 147–177 (French). MR**159212**, DOI 10.7146/math.scand.a-10632 - S. M. Nikol′skiĭ,
*Imbedding, continuation and approximation theorems for differentiable functions of several variables*, Uspehi Mat. Nauk**16**(1961), no. 5 (101), 63–114 (Russian). MR**0149267** - E. M. Stein,
*On the functions of Littlewood-Paley, Lusin, and Marcinkiewicz*, Trans. Amer. Math. Soc.**88**(1958), 430–466. MR**112932**, DOI 10.1090/S0002-9947-1958-0112932-2 - Elias M. Stein and Guido Weiss,
*On the theory of harmonic functions of several variables. I. The theory of $H^{p}$-spaces*, Acta Math.**103**(1960), 25–62. MR**121579**, DOI 10.1007/BF02546524
12. M. Taibleson, Smoothness and differentiability conditions for functions and distributions on E, Dissertation, Univ. of Chicago, Chicago, Ill., August, 1962.
- A. Zygmund,
*Trigonometric series. 2nd ed. Vols. I, II*, Cambridge University Press, New York, 1959. MR**0107776** - A. Zygmund,
*On the preservation of classes of functions*, J. Math. Mech. 8 (1959), 889-895; erratum**9**(1959), 663. MR**0117498**, DOI 10.1512/iumj.1960.9.59040

## Additional Information

- Journal: Bull. Amer. Math. Soc.
**69**(1963), 487-493 - DOI: https://doi.org/10.1090/S0002-9904-1963-10972-6
- MathSciNet review: 0150581