On the embeddability and nonembeddability of certain parallelizable manifolds
HTML articles powered by AMS MathViewer
- by W. C. Hsiang and R. H. Szczarba PDF
- Bull. Amer. Math. Soc. 69 (1963), 534-536
References
- J. F. Adams, Vector fields on spheres, Ann. of Math. (2) 75 (1962), 603–632. MR 139178, DOI 10.2307/1970213 2. B. Eckmann, Gruppen theoretischer Beweis des Satzes von Hurwitz-Radon über die Komposition quadratischer Formen, Comment. Math. Helv. 15 (1942), 358-366.
- W. Hantzsche, Einlagerung von Mannigfaltigkeiten in euklidische Räume, Math. Z. 43 (1938), no. 1, 38–58 (German). MR 1545714, DOI 10.1007/BF01181085
- Morris W. Hirsch, Immersions of manifolds, Trans. Amer. Math. Soc. 93 (1959), 242–276. MR 119214, DOI 10.1090/S0002-9947-1959-0119214-4
- I. M. James and J. H. C. Whitehead, The homotopy theory of sphere bundles over spheres. I, Proc. London Math. Soc. (3) 4 (1954), 196–218. MR 61838, DOI 10.1112/plms/s3-4.1.196
- Michel Kervaire, Courbure intégrale généralisée et homotopie, Math. Ann. 131 (1956), 219–252 (French). MR 86302, DOI 10.1007/BF01342961
- Michel A. Kervaire, An interpretation of G. Whitehead’s generalization of H. Hopf’s invariant, Ann. of Math. (2) 69 (1959), 345–365. MR 102809, DOI 10.2307/1970187
- W. S. Massey, On the cohomology ring of a sphere bundle, J. Math. Mech. 7 (1958), 265-289. MR 0093763, DOI 10.1512/iumj.1958.7.57020
- W. S. Massey, On the normal bundle of a sphere imbedded in Euclidean space, Proc. Amer. Math. Soc. 10 (1959), 959–964. MR 109351, DOI 10.1090/S0002-9939-1959-0109351-8
- John Milnor and Edwin Spanier, Two remarks on fiber homotopy type, Pacific J. Math. 10 (1960), 585–590. MR 117750
- B. J. Sanderson, Immersions and embeddings of projective spaces, Proc. London Math. Soc. (3) 14 (1964), 137–153. MR 165532, DOI 10.1112/plms/s3-14.1.137
- W. A. Sutherland, A note on the parallelizability of sphere-bundles over spheres, J. London Math. Soc. 39 (1964), 55–62. MR 175142, DOI 10.1112/jlms/s1-39.1.55
Additional Information
- Journal: Bull. Amer. Math. Soc. 69 (1963), 534-536
- DOI: https://doi.org/10.1090/S0002-9904-1963-10987-8
- MathSciNet review: 0153024