Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Two theorems on nonlinear functional equations in Hilbert space
HTML articles powered by AMS MathViewer

by George J. Minty PDF
Bull. Amer. Math. Soc. 69 (1963), 691-692
References
  • Felix E. Browder, The solvability of non-linear functional equations, Duke Math. J. 30 (1963), 557–566. MR 156204
  • 2. C. L. Dolph and G. J. Minty, On non-linear integral equations of the Hammerstein type, Nonlinear Integral Equations, Proceedings of the U. S. Army Research Center Advanced Seminar, April, 1963 (to appear). 3. M. Golomb, Über Systeme von nichtlinearen Integralgleichungen, Publications Mathématiques de l’Université de Belgrade, 5 (1936), 52-83.
  • A. Hammerstein, Nichtlineare Integralgleichungen nebst Anwendungen, Acta Math. 54 (1930), no. 1, 117–176 (German). MR 1555304, DOI 10.1007/BF02547519
  • George J. Minty, Monotone (nonlinear) operators in Hilbert space, Duke Math. J. 29 (1962), 341–346. MR 169064
  • E. H. Rothe, Critical points and gradient fields of scalars in Hilbert space, Acta Math. 85 (1951), 73–98. MR 43387, DOI 10.1007/BF02395742
Additional Information
  • Journal: Bull. Amer. Math. Soc. 69 (1963), 691-692
  • DOI: https://doi.org/10.1090/S0002-9904-1963-10986-6
  • MathSciNet review: 0190778