SIMPLY INVARIANT SUBSPACES

BY T. P. SRINIVASAN

Communicated by Edwin Hewitt, March 18, 1963

Let L^1, L^2 denote respectively the spaces of summable and square summable functions on the circle group and H^1, H^2 their subspaces consisting of those functions whose Fourier coefficients vanish for negative indices. A closed subspace M of L^1 or L^2 is "invariant" if

$$\chi M \subset M$$

and "simply invariant" if the above inclusion is strict, where χ is the character

$$\chi(x) = e^{ix}.$$

The structure of simply invariant subspaces is known, namely, they are precisely the subspaces of the form qH^1 or qH^2 (respectively) where q is a measurable function of modulus 1 a.e. Beurling [1] first proved this for subspaces $M \subset H^2$; for $M \subset H^1$, this is due to de Leeuw-Rudin [5]; for $M \subset L^2$, due to Helson-Lowdenslager [3] and for $M \subset L^1$, due to Forelli [2]. In [3] Helson-Lowdenslager also gave a simple proof of the H^2 case, free of function theoretic considerations. Using their arguments Hoffman [4] extended this result to simply invariant subspaces of $H^2(dm)$ defined over logmodular algebras. In this paper we prove this result for simply invariant subspaces of $L^2(dm)$ and $L^1(dm)$ over logmodular algebras; the results of the previous authors follow as a corollary. The proofs of the previous authors

This work was done while I held a visiting appointment at the University of California, Berkeley.

I thank Professors Helson and Ju-kwei Wang for the useful discussions I had with them.
do not extend to this general case as they depend on facts which either
have no analogues or are not true for the logmodular algebras; when
specialised to their contexts, our proof turns out to be even simpler.
Our proof for the case of $L^2(dm)$ was inspired by that of Helson-
Lowdenslager for the H^2 case and is in the same spirit as theirs.

Let X be a compact Hausdorff space and A a subalgebra of the
algebra $C(X)$ of complex continuous functions on X with the uniform
norm.

A is logmodular if

i. A is uniformly closed,

ii. A contains the constant functions,

iii. A separates the points of X and

iv. the set of functions $\log |f|$ where $f, 1/f \in A$, is uniformly dense
in the algebra of real continuous functions on X.

Let m be a probability Baire measure on X which is "multiplica-
tive" on A, meaning

$$\int fg \, dm = \int f \, dm \int g \, dm$$

for all $f, g \in A$ (such measures always exist), and let $H^1(dm), H^2(dm)$
denote the closures of A in $L^1(dm), L^2(dm)$ respectively. The invariant
subspaces M are now closed subspaces of $L^1(dm), L^2(dm)$, which are
invariant under multiplication by functions in A or equivalently by
functions in A_0, where

$$A_0 = \{ f | f \in A, \int f \, dm = 0 \}$$

and the simply invariant M's are those for which the inclusion
$A_0M \subset M$ is strict.\(^a\)

In the case considered earlier, X was the unit circle, A_0 was the
uniform closure of the algebra generated by x in $C(X)$ and m the
normalised Lebesgue measure. We have

\textbf{Theorem.}

1. The simply invariant subspaces of $L^2(dm)$ are precisely the sub-
 spaces of the form $qH^2(dm)$ where $q \in L^2(dm)$ and $|q| = 1$ a.e. (dm).

2. The simply invariant subspaces of $L^1(dm)$ are precisely the sub-
 spaces of the form $qH^1(dm)$ where $q \in L^1(dm)$ and $|q| = 1$ a.e. (dm).

\(^a\) A_0M should be replaced by its closure in $L^2(dm)$ respectively $L^1(dm)$, which
necessitates changes in the proof.

\(^b\) The details of the proof of the L^1 theorem and its function theoretic consequences
will be published separately.
PROOF. It is obvious that subspaces of the form \(qH^2(dm) \), \(qH^1(dm) \) are invariant; they are simply invariant because for instance, \(q \subseteq qH^2(dm) \), \(qH^1(dm) \) while \(q \not\subseteq qA_0H^2(dm) \), \(qA_0H^1(dm) \). To prove the converse:

1. We need the following facts about logmodular algebras [4, pp. 284, 293]:

 (a) \(A+\overline{A} \) is dense in \(L^2(dm) \) where the bar denotes complex conjugation,

 (b) if \(\mu \) is any positive Baire measure on \(X \) such that \(\int f d\mu = 0 \) for all \(f \in A_0 \) then \(d\mu = c dm \) for some constant \(c \).

 Now let \(M \subseteq L^2(dm) \) be simply invariant and let \(q \in M \cap A_0M \), \(q \neq 0 \). Then \(q \perp A_0 q \), so \(\int |q|^2 dm = 0 \) for all \(f \in A_0 \) and by (b), \(|q|^2 = c \) a.e. By modifying \(q \) we may assume that \(|q| = 1 \) a.e.

 Clearly \(qH^2(dm) \subseteq M \), because of invariance of \(M \). Let \(g \in M \cap qH^2(dm) \). Then \(g \perp q \), so \(g \perp A \). Also \(A_0 g \subseteq A_0 M \), so \(g \perp A_0 g \) so that \(g \perp A + \overline{A} \). Thus \(g \perp A + \overline{A} \), hence \(g = 0 \) a.e. by (a) and since \(|q| = 1 \) a.e., \(g = 0 \). Thus \(M = qH^2(dm) \).

2. We use (1) to prove (2). Let \(N \subseteq L^1(dm) \) be simply invariant and let \(M = N \cap L^2(dm) \). \(M \) is clearly an invariant subspace of \(L^2(dm) \). We shall show that it is actually simply invariant. Let \(f \in N \). We can find \(f_1, f_2 \in L^2(dm) \) such that \(f = f_1 f_2 \); we may also assume that one of them, say, \(f_2 \) is nonzero a.e. Then \(f_2H^2(dm) \) is a simply invariant subspace of \(L^2(dm) \) and is by (1) of the form \(q_2H^2(dm) \), \(|q_2| = 1 \) a.e. Now

 \[
 f_1 q_2 \subseteq f_1 q_2 H^2(dm) = f_1 f_2 H^2(dm) = f H^2(dm) \subseteq N.
 \]

 Also \(f_1 q_2 \in L^2(dm) \). Hence \(f_1 q_2 \subseteq M \). Suppose \(M = A_0 M \). Then \(f_1 q_2 \in A_0 M \). Let

 \[
 f_1 q_2 = f_0 g, \quad f_0 \in A_0, \quad g \in M \subseteq N
 \]

 and

 \[
 f = g h, \quad h \in H^2(dm).
 \]

 Then

 \[
 f = f_1 f_2 = f_1 q_2 h = f_0 g h \subseteq A_0 NH^2(dm) \subseteq A_0 N
 \]

 and it follows that \(N = A_0 N \). Hence if \(N \) is simply invariant, so is \(M \).

 Let then \(M = qH^2(dm) \) by (1). We shall show that \(N = qH^1(dm) \). Clearly \(qH^2(dm) \subseteq N \). Let \(f \in N \) and \(f_1, f_2, q_2, h \) be as above. Then \(f_1 q_2 \subseteq M = qH^2(dm) \). Let \(f_1 q_2 = g h', h' \in H^2(dm) \). Then

 \[
 f = f_1 f_2 = f_1 q_2 h = q h' h \subseteq qH^1(dm)
 \]

 as \(h', h \in H^2(dm) \). It follows that \(N = qH^1(dm) \).
We may remark that if $M \subseteq \mathcal{H}^1(dm)$ is invariant and we assume with Hoffman [4, p. 293] that $\int g dm \neq 0$ for at least one $g \in M$ then M is certainly simply invariant and Hoffman's result follows. But this latter condition is not necessary for simple invariance as the example of $a^k \mathcal{H}^1$, $k \geq 1$ shows.

REFERENCES

Panjab University, Chandigarh, India and University of California, Berkeley