DUALITY THEOREMS FOR CONVEX FUNCTIONS

BY R. T. ROCKAFELLAR

Communicated by A. M. Gleason, September 19, 1963

Let \(F \) be a finite-dimensional real vector space. A proper convex function on \(F \) is an everywhere-defined function \(f \) such that \(-\infty < f(x) \) for all \(x \), \(f(x) < \infty \) for at least one \(x \), and

\[
f(\lambda x_1 + (1 - \lambda)x_2) \leq \lambda f(x_1) + (1 - \lambda)f(x_2)
\]

for all \(x_1 \) and \(x_2 \) when \(0 < \lambda < 1 \). Its effective domain is the convex set \(\text{dom } f = \{ x | f(x) < \infty \} \). Its conjugate \([2; 3; 6; 7]\) is the function \(f^* \) defined by

\[
(1) \quad f^*(x^*) = \sup\{ (x, x^*) - f(x) | x \in F \}
\]

for each \(x^* \in F^* \), where \(F^* \) is the space of linear functionals on \(F \). The conjugate function is proper convex on \(F^* \), and is always lower semi-continuous. If \(f \) itself is l.s.c., then \(f \) coincides with the conjugate \(f^{**} \) of \(f^* \) (where \(F^{**} \) is identified with \(F \)). These facts and definitions have obvious analogs for concave functions, with “inf” replacing “sup” in (1).

Suppose \(f \) is l.s.c. proper convex on \(F \) and \(g \) is u.s.c. proper concave on \(F \). If

\[
\text{ri } (\text{dom } f) \cap \text{ri } (\text{dom } g) \neq \emptyset,
\]

where \(\text{ri } C \) denotes the relative interior of a convex set \(C \), then

\[
\inf\{ f(x) - g(x) | x \in F \} = \max\{ g^*(x^*) - f^*(x^*) | x^* \in F^* \}.
\]

This was proved by Fenchel \([3, \text{p. 108}]\) (reproduced in \([5, \text{p. 228}]\)). The purpose of this note is to announce the following more general fact.

Theorem 1. Let \(F \) and \(G \) be finite-dimensional partially-ordered real vector spaces in which the nonnegative cones \(P(F) \) and \(P(G) \) are polyhedral. Let \(A \) be a linear transformation from \(F \) to \(G \). Let \(f \) be a proper convex function on \(F \) and let \(g \) be a proper concave function on \(G \). If there exists at least one \(x \in \text{ri } (\text{dom } f) \) such that \(x \geq 0 \) and \(Ax \geq y \) for some \(y \in \text{ri } (\text{dom } g) \), then

\[
\inf \{ f(x) - g(y) | x \geq 0, Ax \geq y \} = \max\{ g^*(y^*) - f^*(x^*) | y^* \geq 0, A^*y^* \leq x^* \},
\]

where \(A^* \) is the adjoint of \(A \).

\[1\] The material in this note stems from the author’s recent doctoral dissertation at Harvard. Support was provided under grant AF-AFOSR-62-348 at the Computation Center, Massachusetts Institute of Technology.
The partial-orderings are, of course, assumed to be compatible with the vector structure. The orderings in \(F^* \) and \(G^* \) are dual to those in \(F \) and \(G \), i.e. \(P(F^*) \) consists of the \(x^* \) such that \((x, x^*) \geq 0 \) whenever \(x \geq 0 \), etc.

In particular, any \(F \) and \(G \) can be supplied with the degenerate partial-orderings in which \(P(F) = F \) and \(P(G) = \{0\} \), so that \(P(F^*) = \{0\} \) and \(P(G^*) = G^* \). If Theorem 1 is then invoked, one obtains

Corollary 1. Assume the notation of Theorem 1, but omit the partial-ordering of \(F \) and \(G \). If \(Ax \in \text{ri}(\text{dom } g) \) for at least one \(x \in \text{ri}(\text{dom } f) \), then

\[
\inf \{f(x) - g(Ax) \mid x \in F\} = \max \{g^*(y^*) - f^*(A^*y^*) \mid y^* \in G^*\}.
\]

When \(F = G \) and \(A = I \), Corollary 1 furnishes a slightly generalized version of Fenchel's theorem not requiring semi-continuity.

Another new result is the following.

Corollary 2. Assume the notation of Theorem 1, and suppose also that \(\text{dom } f, \text{dom } f^*, \text{dom } g \) and \(\text{dom } g^* \) are all linear manifolds. If any one of the following is true,

(a) \(\inf \{f(x) - g(y) \mid x \geq 0, Ax \geq y\} \) is finite,

(b) \(\sup \{g^*(y^*) - f^*(x^*) \mid y^* \geq 0, A^*y^* \leq x^*\} \) is finite,

(c) \(\{\langle x, y \rangle \mid 0 \leq x \in \text{dom } f, Ax \geq y \in \text{dom } g\} \neq \emptyset \) and

\[
\{\langle y^*, x^* \rangle \mid 0 \leq y^* \in \text{dom } g^*, A^*y^* \leq x^* \in \text{dom } f^*\} \neq \emptyset,
\]

then all three are true. Moreover, then the "\(\inf \)" and "\(\sup \)" are equal and both are attained.

This corollary is deduced from Theorem 1 and its dual (in which the roles of the starred and unstarred elements are reversed), using the trivial fact that \(\text{ri } C = C \) when \(C \) is a linear manifold. The appropriate semi-continuity of \(f \) and \(g \), which one needs in order that \(f^{**} = f \) and \(g^{**} = g \) in the dual of Theorem 1, is also a consequence of the hypothesis, because a convex or concave function is actually continuous on any relatively open set where it is finite-valued.

Fix any \(b^* \in F^* \) and \(c \in G \). Let \(f(x) = (x, b^*) \). Let \(g(y) = 0 \) if \(y = c \) and \(g(y) = -\infty \) if \(y \neq c \). Then \(f^*(x^*) = 0 \) if \(x^* = b^* \), \(f^*(x^*) = \infty \) if \(x^* \neq b^* \), and \(g^*(y^*) = (c, y^*) \). In this situation, Corollary 2 yields the important existence and duality theorems of Gale, Kuhn and Tucker for linear programs (see [4]). Many other convex programming results, both new and old, are also contained in the theorem and its corollaries. The common extremum value can be characterized as a minimax.
Theorem 1 is proved by way of a simpler theorem of some interest in itself.

Theorem 2. Let h be a proper convex function on a finite-dimensional real vector space E and let K be a polyhedral convex cone in E. If $\text{ri}(\text{dom } h)$ intersects K, then

$$(3) \quad \inf \{ h(z) \mid z \in K \} = - \min \{ h^*(z^*) \mid z^* \in K^* \},$$

where $K^* = \{ z^* \in E^* \mid (z, z^*) \geq 0 \text{ for all } z \in K \}$.

An outline of the proof of Theorem 2 follows. One shows first that no generality is lost if h is assumed l.s.c. Then one observes that (3) holds whenever $\text{ri}(\text{dom } h)$ actually intersects $\text{ri } K$. This is obtained from Fenchel's theorem by taking $f(z) = h(z)$, $g(z) = 0$ if $z \in K$, $g(z) = -\infty$ if $z \notin K$. The proof proceeds now by induction on the dimension of K. If $\text{dim } K = 0$, then $\text{ri } K = K$ trivially, so (3) is true. Assume next that (3) is true for cones of dimension less than r, and that $\text{dim } K = r$. It may be supposed that $\text{ri}(\text{dom } h)$ does not intersect $\text{ri } K$, since the other case has been covered. A separation argument then produces a $z^* \in K^*$ such that $-z^* \in K^*$ and

$$(4) \quad (z, z^*) \leq 0 \quad \text{for all } z \in \text{dom } h.$$

Let $K_0 = \{ z \in K \mid (z, z^*_0) = 0 \}$. Then K_0 is a polyhedral convex cone, and $\text{dim } K_0 < r$. Hence by the induction hypothesis

$$(5) \quad \inf \{ h(z) \mid z \in K_0 \} = - \min \{ h^*(z^*) \mid z^* \in K_0^* \}.$$

It is easy to see from the properties of z^*_0 that the left sides of (3) and (5) are the same. On the other hand, because K is polyhedral,

$$K_0^* = \{ z^* - \lambda z^*_0 \mid z^* \in K^*, \lambda \geq 0 \}.$$

Moreover, (4) and definition (1) imply that $h^*(z^* - \lambda z^*_0) \geq h^*(z^*)$ for all $z^* \in E^*$ and $\lambda \geq 0$. Therefore the minimum of h^* on K_0^* can be achieved on K^* itself, so that the right sides of (3) and (5) are equivalent, too.

Theorem 1 is deduced from Theorem 2 by choosing

$$E = \{ z = \langle x, y \rangle \mid x \in F, y \in G \}, \quad h(z) = f(x) - g(y),$$

$$K = \{ \langle x, y \rangle \mid x \geq 0, Ax \geq y \}.$$

University of Texas