
RESEARCH PROBLEMS 

1. Daihachiro Sato: Function theory. 

A. Does there exist a transcendental entire (meromorphic) func
tion which has (1) algebraic values at all algebraic points and has 
(2) transcendental values at all transcendental points? (The proposer 
constructed a transcendental entire function with condition (1) alone 
in [4], using the method similar to that in [ l ] . The question of the 
existence of a transcendental entire function with condition (2) alone 
is open.) 

B. Let 
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Find the coefficients Ck explicitly. Are there infinitely many k with 
Ck — 0 as in the case of Stirling's formula for T(r)t (The Ck can be 
calculated successively, but we want to have Ck as a function of k 
as in the case of Stirling's formula.) <t>(r) gives precise dividing line 
for the growth M(r) of Hurwitz entire functions (i.e., entire func
tions f(z) with jf(n)(0) = integer, n~0, 1, 2, • • • ) below which one 
finds only polynomials [2; 3; S]. 
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2. J. R. Isbell: Piecewise polynomial functions. 

Can every continuous piecewise polynomial function on the plane 
be generated from polynomials by lattice operations? (ƒ is piecewise 
polynomial if it satisfies an equation JJ» (f(x) •—P»(#)) = 0 , where the 
Pi are finitely many polynomials.) 

This is related to questions on the field of elementarily definable 
sets, particularly whether components are elementarily definable. 
(This is the field generated by sets P(x) > 0, P an integral polynomial ; 
see Tarski, A decision method for elementary algebra and geometry, 
Berkeley, 1951.) In w-space it is known that an elementarily definable 
set has only finitely many components. For the sets P(x)>0, John 
Nash notes there are no more components than the number of max
ima of a suitable rational function P/Q. From some elementary 
formulas (Henriksen and Isbell, Pacific J. Math. 12 (1962), 533), the 
lattice combinations of polynomials form a ring. 

(Received November 5, 1963.) 

3. E. M. Horadam: Number theory or numerical semigroups. 

Suppose given a finite or infinite sequence {p} of real numbers 
(generalised primes) such that Kpi<p2<pz< • • • . Form the set 
{/} of all possible ^-products, i.e., products p^pl2 • • • , where 
»ii i>2 • • ' are integers ^ 0 of which all but a finite number are 0. 
Call these numbers generalised integers and suppose that no two 
generalised integers are equal if their v's are different. 

Then arrange {/} as an increasing sequence : 1 = h < h < h < • * • . 
Let [x] denote the number of generalised integers ^x. 

A particular sequence of generalised integers is constructed with 
the following additional assumption. If 

[/«] = [lr]+[h], 

then 

[7M7H7]' 
for any generalised prime p, and any generalised integers lny lr and /«. 

Given the first two generalised primes, this sequence must begin 
as follows: 

(2) 1 < pi < pi < • • • < p\ < p2 < - • • (k an integer ^ 1). 
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PROBLEM A. Does assumption (1) define the sequence (2) suffi
ciently to give the only possible positions in which succeeding gen
eralised primes p%, p±, • • • may appear? The answer to this is proba
bly yes. 

PROBLEM B. If succeeding generalised primes p^ p±, • • • are placed 
in all positions open to them, can the general term of (2) be found 
explicitly? 

PROBLEM C. Apart from the special case 1 <p\<pi<p\< • • • , is 
it possible for (2) to contain two consecutive numbers which are both 
generalised primes? 

(Received November 8, 1963.) 

4. David E. Daykin : Space filling with unequal cubes. 

It is shown in [ l ] that a unit square can be dissected into unequal 
rational squares. Using such a dissected unit square one can fill the 
plane with unequal rational squares (see Figure 1). One can do the 
same thing without having a dissected rectangle (see Figures 2, 3). It 

3 5 

riiti........... 

3 
i 

8 

2 
5 

7 
S 

1 
[Î 

3 

21 15 

FIGURE 1 FIGURE 2 

is also proved in [ l ] that a cube cannot be dissected into smaller 
unequal cubes. On the other hand C. A. Rogers has given an inter
esting space filling using cubes of just two sizes (cf. [2, p. 148]). We 
here ask, "Can space be filled with disjoint cubes, no two cubes being 
the same size, and the lengths of the edges of the cubes being integers ?" 
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5. Robert R. Korfhage: On a sequence of prime numbers. 

In the research problem entitled Recursive function theory (Bull. 
Amer. Math. Soc. 69 (1963), 737), Mullin raises a series of questions 
concerning prime sequences generated by following Euclid's scheme 
for proving the infinitude of the primes. We address ourselves to the 
third question, namely, whether or not the sequence generated in this 
manner, choosing at each step the highest prime factor, is monotone 
increasing. A short calculation on our IBM 7090 has shown that the 
sequence in question is 2, 3, 7, 43, 139, 50207, 340999, 3202139, 
410353, • • • , and hence is not monotone. In fact, an examination of 
the table of prime factors given below shows that there is no way to 
choose the prime factors to form a monotone sequence, since at each 
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stage there is at most one possible choice, namely the highest prime 
factor. 

n 
1 
2 
3 
4 
5 
6 
7 
8 
9 

P„ 
2 
3 
7 
43 
139 

50207 
340999 
3202139 
410353 

Prime Factors of YL"-i P'+ 

3 
7 
43 
13, 139 
5, 50207 
23, 1607, 340999 
5521, 3202139 
5, 53, 199, 410353 
. . . 

In view of this result, it seems natural to add the following ques
tions to those proposed by Mullin. (i) Are any, or all, of the sets 
generated in this manner and choosing the prime factor at each stage 
in any way recursive? (ii) Do any, or all, of these sets contain all of 
the prime numbers? 

(Received December 20, 1963.) 


