Ergodic properties of isometries in $L^p$ spaces $1 < p < \infty$
HTML articles powered by AMS MathViewer
- by A. Ionescu Tulcea PDF
- Bull. Amer. Math. Soc. 70 (1964), 366-371
References
-
1. S. Banach, Théorie des opérations linéaires, Monogr. Mat., Warsaw, 1932.
- R. V. Chacon, A class of linear transformations, Proc. Amer. Math. Soc. 15 (1964), 560–564. MR 165071, DOI 10.1090/S0002-9939-1964-0165071-7 3. N. Dunford and J. T. Schwartz, Linear operators, I, Interscience, New York, 1958.
- Paul R. Halmos, Measure Theory, D. Van Nostrand Co., Inc., New York, N. Y., 1950. MR 0033869
- Alexandra Ionescu Tulcea, Un théorème de catégorie dans la théorie ergodique, C. R. Acad. Sci. Paris 257 (1963), 18–20 (French). MR 154964
- A. Ionescu Tulcea, On the category of certain classes of transformations in ergodic theory, Trans. Amer. Math. Soc. 114 (1965), 261–279. MR 179327, DOI 10.1090/S0002-9947-1965-0179327-0
- John Lamperti, On the isometries of certain function-spaces, Pacific J. Math. 8 (1958), 459–466. MR 105017
- E. M. Stein, On the maximal ergodic theorem, Proc. Nat. Acad. Sci. U.S.A. 47 (1961), 1894–1897. MR 131517, DOI 10.1073/pnas.47.12.1894
- Fred B. Wright, The converse of the Individual Ergodic theorem, Proc. Amer. Math. Soc. 11 (1960), 415–420. MR 117318, DOI 10.1090/S0002-9939-1960-0117318-7
Additional Information
- Journal: Bull. Amer. Math. Soc. 70 (1964), 366-371
- DOI: https://doi.org/10.1090/S0002-9904-1964-11099-5
- MathSciNet review: 0206207