ON BOUNDING HARMONIC FUNCTIONS
BY LINEAR INTERPOLATION

BY H. F. WEINBERGER

Communicated by E. Calabi, February 10, 1964

It is well known [1], [4] that Poisson’s formula for the value at the
origin O of a function which is harmonic inside a circle $(x-x_0)^2 + (y-y_0)^2 = A^2$ can be written in the form

$$u(O) = \frac{1}{2\pi} \int_0^{2\pi} \frac{R(\theta + \pi)u(R(\theta), \theta) + R(\theta)u(R(\theta + \pi), \theta + \pi)}{R(\theta) + R(\theta + \pi)} \, d\theta,$$

where $r = R(\theta)$ is the polar equation of the boundary. Thus the value of a harmonic function at any point in a circle is an average of the values obtained by linear interpolation of the boundary values at the ends of each chord through the point.

In particular, it follows that

$$u(O) \leq \max R(\theta + \pi)u(R(\theta), \theta) + R(\theta)u(R(\theta + \pi), \theta + \pi) \quad \frac{R(\theta) + R(\theta + \pi)}{R(\theta) + R(\theta + \pi)}.$$

It is tempting to conjecture that a similar inequality holds for harmonic functions in any convex or even star-shaped domain. Recently J. Barta [2], [3] has given two incomplete proofs of this conjecture.

We shall show that in general no inequality of the form

$$u(O) \leq M \max R(\theta + \pi)u(R(\theta), \theta) + R(\theta)u(R(\theta + \pi), \theta + \pi) \quad \frac{R(\theta) + R(\theta + \pi)}{R(\theta) + R(\theta + \pi)}$$

(1)

can hold for all harmonic functions in a star-shaped domain $r < R(\theta)$. In fact, an inequality of the form (1) holds for each point O of a convex domain D only if D is the interior of a circle.

We first prove:

Lemma. Let G be the Green’s function with singularity at O for the
two-dimensional domain $D: r < R(\theta)$. An inequality of the form (1) holds for all harmonic functions u if and only if the identity

$$R(\theta)(R(\theta)^2 + R'(\theta)^2)^{1/2} \frac{\partial G}{\partial n} (R(\theta), \theta)$$

(2)

$$= R(\theta + \pi)(R(\theta + \pi)^2 + R'(\theta + \pi)^2)^{1/2} \frac{\partial G}{\partial n} (R(\theta + \pi), \theta + \pi)$$

1 This research was supported by NSF Grant No. GP-2280.
holds for all θ. If (2) is satisfied, (1) holds with $M = 1$.

Proof. Let a be a constant such that

$$\frac{R(\theta + \pi)u(R(\theta), \theta) + R(\theta)u(R(\theta + \pi), \theta + \pi)}{R(\theta) + R(\theta + \pi)} \leq a$$

for all θ.

We write the representation

$$u(O) = -\int_{r=R(\theta)} u \frac{\partial G}{\partial n} ds$$

in the form

$$u(O) = a - \int_0^{2\pi} [u(R(\theta), \theta) - a] \frac{\partial G}{\partial n} (R(\theta), \theta) \frac{ds}{d\theta} d\theta.$$

In the identity

$$\int_0^{2\pi} f(\theta) g(\theta) d\theta = \frac{1}{2} \int_0^{2\pi} \left\{ [f(\theta) + f(\theta + \pi)] [g(\theta) + g(\theta + \pi)] + [f(\theta) - f(\theta + \pi)] [g(\theta) - g(\theta + \pi)] \right\} d\theta$$

we let

$$f(\theta) = \frac{u(R(\theta), \theta) - a}{R(\theta)},$$

$$g(\theta) = -R(\theta) \frac{\partial G}{\partial n} (R(\theta), \theta) \frac{ds}{d\theta}$$

$$= -R(\theta) (R(\theta)^2 + R'(\theta)^2)^{1/2} \frac{\partial G}{\partial n} (R(\theta), \theta).$$

Then $g(\theta) \geq 0$. By (3),

$$f(\theta) + f(\theta + \pi) \leq 0.$$

Thus,

$$u(O) \leq a + \frac{1}{2} \int_0^{\pi} [f(\theta) - f(\theta + \pi)] [g(\theta) - g(\theta + \pi)] d\theta.$$

Equality holds if $f(\theta) + f(\theta + \pi) = 0$; that is, for those boundary values $u(R(\theta), \theta)$ satisfying

$$R(\theta + \pi)u(R(\theta), \theta) + R(\theta)u(R(\theta + \pi), \theta + \pi) = a[R(\theta) + R(\theta + \pi)].$$
If \(f(\theta) \) is made to satisfy only this condition, the function \(f(\theta) - f(\theta + \pi) \) is completely arbitrary for \(0 \leq \theta < \pi \). The right-hand side of (8) and therefore also \(u(0) \) can be made arbitrarily large unless \(g(\theta) - g(\theta + \pi) = 0 \). This is the condition (2).

If (2) is satisfied, (8) becomes \(u(0) \leq a \), which is (1) with \(M = 1 \).

We remark that (2) is certainly satisfied if the symmetry condition

\[
R(\theta + \pi) = R(\theta)
\]

holds. This means that the point \(O \) bisects each chord through it. This is true at the center of an ellipse, or of a parallelogram. In such a case we find that

\[
u(0) \leq \max \frac{1}{2}[u(R(\theta), \theta) + u(R(\theta + \pi), \theta + \pi)].
\]

We can now prove:

Theorem. If a bound of the form (1) for harmonic functions \(u \) holds at each point \(O \) of a convex domain \(D \) with smooth boundary \(C \), then \(C \) is a circle.

Proof. We consider the chord \(PQ \) connecting any two boundary points \(P \) and \(Q \). Let its length be \(d \), and let \(O \) be the point on this chord at distance \(\delta \) from \(Q \).

Let the chord make angles \(\alpha \) and \(\beta \), respectively, with the normals at \(P \) and \(Q \).

By hypothesis, (1) holds at \(O \). Hence by the lemma we have

\[
(9) \quad \frac{(d - \delta)^2}{\cos \alpha} \frac{\partial G}{\partial n}(O, P) = \frac{\delta^2}{\cos \beta} \frac{\partial G}{\partial n}(O, Q).
\]

We let \(O \) approach \(Q \) by making \(\delta \to 0 \). It is easily seen that
\[\frac{\partial G}{\partial n} (O, Q) = \frac{-1}{\pi \delta} \cos \beta + O(1). \]

(The leading term comes from Green's function for the half-plane.)

On the other hand, since \((\partial G/\partial n)(O, P) = 0 \) for \(O \) on \(C \),

\[\frac{\partial}{\partial n} G (O, P) = -\cos \beta \frac{\partial^2 G}{\partial n_P \partial n_Q} (P, Q) + O(\delta^2). \]

Dividing (9) by \(\delta \) and letting \(\delta \to 0 \), we find

\[\frac{d^2}{dn_P dn_Q} G (P, Q) \cos \beta \cos \alpha = \frac{1}{\pi}. \]

The function \(\partial^2 G/\partial n_P \partial n_Q \) is symmetric in \(P \) and \(Q \). Letting \(\delta \to d \),

we find the same equation with \(\alpha \) and \(\beta \) interchanged. Hence \(\cos \alpha = \cos \beta \). This is true for all \(P \) and \(Q \) on \(C \). Letting \(Q \to P \) on \(C \) and

using the fact that \(\beta \) is a continuous function of \(Q \), we find that \(\alpha = \beta \).

An elementary exercise in differential geometry shows that \(\alpha = \beta \)

for all \(P \) and \(Q \) on \(C \) implies that \(C \) is a circle. This proves the theorem.

Remark. If we restrict our attention to non-negative \(u \):

\[u(R(\theta), \theta) \geq 0, \]

the inequality (8) does lead to a bound of the form (1) with the best possible constant

\[M = 1 + \int_0^\pi \max \left\{ \frac{1}{R(\theta + \pi)} \left[g(\theta) - g(\theta + \pi) \right], \frac{1}{R(\theta)} \left[g(\theta + \pi) - g(\theta) \right] \right\} d\theta. \]

(10)

However, the evaluation of this constant requires rather detailed information about the kernel \(\partial G/\partial n \), which is difficult to come by.

In this case the maximum principle gives (1) with

\[M = 1 + \max_{0 \leq \theta \leq 2\pi} \left\{ \frac{R(\theta + \pi)}{R(\theta)} \right\}, \]

which is just what one obtains by means of crude estimates for the Green’s function in (10).

The analogous results in \(n \) dimensions can be proved in the same manner.
1964] THEORY OF ORDINARY DIFFERENTIAL EQUATIONS 529

BIBLIOGRAPHY

UNIVERSITY OF MINNESOTA

A NOTE ON THE FUNDAMENTAL THEORY OF ORDINARY DIFFERENTIAL EQUATIONS

BY GEORGE R. SELL

Communicated by H. Antosiewicz, February 19, 1964

In this note we present some results on various problems connected with ordinary differential equations which do not necessarily satisfy a uniqueness condition. Using the concept of an integral funnel we are able to generalize the classical theorem on continuity with respect to initial conditions. This then leads to a reformulation of the problem of classifying the solutions of a given differential equation. That is, it is shown that every continuous vector field \(f(x) \) on \(W \) gives rise to a bicontinuous injection of \(W \) into a space of functions \(\mathcal{H} \), and consequently the problem of classifying solutions is equivalent to the problem of characterizing this family of bicontinuous injections. A detailed discussion, with proofs, will appear later.

1. Introduction. Let us consider the differential equation

\[
x' = f(x)
\]

where \(f \) is defined and continuous on some open, connected set \(W \) in \(\mathbb{R}^n \), real \(n \)-space. We shall let \(W^* = W \cup \{\omega\} \) denote the one-point compactification of \(W \). There is then at least one solution \(\phi(p, t) \) of (1) through every point \(p \in W \) with \(\phi(p, 0) = p \). Moreover, every solution is defined on some maximal interval \(J_p \) where either \(J_p = \mathbb{R}^1 \) or \(\phi(p, t) \to \{\omega\} \) as \(t \to \text{bdy } J_p \). It should be noted that since the solutions of (1) may not be unique, the interval \(J_p \) depends not only on \(p \).

\(^1\) The research on this paper was supported in part by a grant from the U. S. Army Research Office (Durham).