ON THE LOCAL BEHAVIOR OF THE RATIONAL
TSCHEBYSCHEFF OPERATOR

BY HELMUT WERNER

Communicated by A. S. Householder, February 10, 1964

Let \(l \) and \(r \) be non-negative integers. Denote by \(\mathcal{R}_{l,r} \) the set of all rational functions where the degrees of the numerator and denominator do not exceed \(l \) and \(r \) respectively. If \(R = \frac{p}{q} \in \mathcal{R}_{l,r} \) and \(p \) and \(q \) are relatively prime polynomials of degree \(\deg p \) and \(\deg q \), then \(d_{l,r}[R] := \min \{ l - \deg p, r - \deg q \} \) is called the defect of \(R \) in \(\mathcal{R}_{l,r} \): the function \(R \) is called degenerate, if the defect is positive. (For these notations compare Werner (1962) [3].)

For a fixed interval \([a, b]\) let \(T_{l,r}[f] \) be the Tschebyscheff Approximation of \(f \in C[a, b] \) in the class \(\mathcal{R}_{l,r} \) with respect to the norm \(\| f \| := \max_{[a, b]} |w(x) \cdot f(x)| \), with \(w(x) \) a positive continuous weight function in \([a, b]\). We write \(\eta_{l,r}[f] := \| f - T_{l,r}[f] \| \). Those \(f \) for which \(T_{l,r}[f] \) is not degenerate are called normal by Cheney and Loeb (1963) [1]. Already Maehly and Witzgall (1960) [2] proved that \(T_{l,r}[f] \) furnishes a continuous map of \(C[a, b] \) into itself at \(f \) with respect to the introduced norm, if \(f \) is normal. For the actual verification of normality one may use the following normality criterion:

Let \(g(x) \) be normal for \(T_{l,r} \). Then \(f(x) \) is normal if

\[
\| f - g \| < \left(\eta_{l-1,r-1}[g] - \eta_{l,r}[g] \right)/2.
\]

Except for the case \(r = 1, l \) arbitrary (compare Werner (1963) [3]) no specific properties of \(f \) are known to insure normality of \(f \) for arbitrary \(l, r \).

Maehly and Witzgall (1960) [2] also gave an example that showed that \(T_{l,r}[f] \) need not be continuous at \(f \), if \(f \) is not normal. Recently Cheney and Loeb (1963) [1] made an extensive study of generalized rational approximation and proved that \(T_{l,r}[f] \) is not continuous, if \(f \) is not normal and if no alternant of the error function \(\eta(x) := w(x)(f(x) - T_{l,r}[f](x)) \) has \(r + l + 2 \) points. This later restriction may be lifted and one obtains the following classification.

Theorem 1. The operator \(T_{l,r}[f] \) is continuous at \(f \) if and only if \(f \) is normal or belongs to the class \(\mathcal{R}_{l,r} \).

In order to prove this, one now only has to cope with the case that the error function has an alternant of \(l + r + 2 \) points. By a proper

\(^1 \) Added in proof. Recently a criterion has been published by H. L. Loeb, Notices Amer. Math. Soc. 11 (1964), 335.
construction one finds a sequence of continuous functions \(f_n \); \(n = 1, 2, \ldots \) that converges uniformly to \(f \) and whose associated \(T \)-approximations do not converge to \(T_{i,r}[f] \).

The construction is not quite easy, because on the other hand one can prove that \(T_{i,r}[f_n](x) \) converges to \(T_{i,r}[f](x) \) pointwise in \((a, b)\), if \(f_n \) converges to \(f \) uniformly in \([a, b]\), and if \(d_{i,r}[T_{i,r}[f]] \leq 1 \). This result shows that one might expect convergence in a somewhat looser sense. If the defect is greater than 1, then pointwise convergence no longer persists, although from every sequence \(f_n \) uniformly converging to \(f \) a subsequence can be extracted for which the associated \(T \)-approximations converge pointwise with at most \(r \) exceptional points in \([a, b]\). Thus the best one can hope for is convergence in measure.

Theorem 2. Given \(f \in C[a, b] \). To every \(\epsilon > 0, \epsilon_1 > 0 \) one can find \(\delta > 0 \) such that

\[
\|f - g\| < \delta
\]

implies that there is a finite number of intervals depending on \(g \) whose total length is less than \(\epsilon_1 \) such that for all points of \([a, b]\) not lying in the said intervals the inequality

\[
|T_{i,r}[f](x) - T_{i,r}[g](x)| < \epsilon
\]

holds.

The proofs of these results will be given elsewhere, the methods used are similar to that of §7 of Werner (1962) [4].

References

Stanford University and
Institut für Angewandte Mathematik der Universität,
Hamburg, Germany