A SPARSE REGULAR SEQUENCE OF EXPONENTIALS
CLOSED ON LARGE SETS

BY H. J. LANDAU
Communicated by P. D. Lax, March 30, 1964

Introduction. For a given sequence \(\{ \lambda_k \} \) of complex numbers, the problem of determining those intervals \(I \) on which the exponentials \(\{ e^{i\lambda_k x} \} \) are complete in various function spaces has been extensively studied [3]. Since the problem is invariant under a translation of \(I \), only the lengths of \(I \) are involved, and attention has focused on the relation between these lengths and the density of the sequence \(\{ \lambda_k \} \). With the function space taken to be \(L^p(I) \) for \(1 \leq p < \infty \), or \(C(I) \), the continuous functions on \(I \), the general character of the results has been that there exist sparse real sequences (\(\lim r^{-1}(\text{the number of } |\lambda_k| < r) = 0 \), for example) for which \(I \) can be arbitrarily long [2], but all such sequences are nonuniformly distributed; when a sequence is sufficiently regular, in the sense that \(\lambda_k \) is close enough to \(k \), the length of \(I \) cannot exceed \(2\pi \) [4, p. 210]. Most recently, in a complete solution which accounts for all these phenomena, Beurling and Malliavin have proved that the supremum of the lengths of \(I \) is proportional to an appropriately defined density of \(\{ \lambda_k \} \) [1].

The purpose of this note is to show that the situation is quite different when the single interval \(I \) is replaced by a union of intervals. Specifically, we will construct a real symmetric (or positive) sequence \(\{ \lambda_k \} \) arbitrarily close to the integers, for which the corresponding exponentials are complete in \(C(S) \), where \(S \) is any finite union of the intervals \(|x - 2n\pi| < \pi - \delta \), with integer \(n \) and \(\delta > 0 \), and so has arbitrarily large measure. Thus, for sets \(S \) more general than intervals,
it would seem that no relation can be expected between measure of S and density of $\{\lambda_k\}$.

Acknowledgment. I am very indebted to Professor Beurling for his interest and advice.

Results.

Lemma 1. We may partition the positive integers into an infinite number of disjoint sequences $S_r = \{k\}^{n}_{n=1}, r = 1, 2, \ldots$, with the property that $\lim sup n/k^{(r)} = 1$ for each r.

Proof. We will define S_r as the union $\bigcup_{n=1}^{\infty} \sigma_{i,r}$ of disjoint blocks $\sigma_{i,r}$ of consecutive integers. To define $\sigma_{i,r}$, we order the integer couples (i, r) with $i, r \geq 1$, by increasing values of $s = i+r$, and for same values of s, by increasing i. We let $\sigma_{1,1} = \{1\}$ and choose the remaining $\sigma_{i,r}$ consecutively in the order of the (i, r), letting each $\sigma_{p,q}$ begin with the first integer not included in the previously defined σ; we pick $\sigma_{p,q}$ so long that if N is the number of integers in $\sigma_{p,q}$, k is the first of them, and M is the total number of integers in the (already determined) $\sigma_{j,q}$ with $j < p$, then $(N+M)/(k+N-1) > 1-1/p$. By this construction, whenever $k^{(r)}$ in S_r coincides with the right-hand endpoint of a $\sigma_{i,r}$ we have $n/k^{(r)} > 1-1/i$, so that $\lim sup n/k^{(r)} = 1$ for each r. Finally, the S_r are all disjoint and their union is all positive integers. Lemma 1 is established.

Lemma 2. With $\theta_1, \theta_2, \ldots$ real numbers, set $z_k = e^{i2\pi \theta_k}$, and denote by $\Delta(\theta_1, \ldots, \theta_n)$ the determinant whose $2j$th row is $z_j^{-1}, z_j^{-2}, \ldots, z_j^{-n}$ and whose $(2j-1)$th row is $z_j^{n+1}, z_j^{n+2}, \ldots, z_j^n$, with $1 \leq j \leq n$. Then given $\epsilon > 0$ we may choose $\theta_1, \theta_2, \ldots$ with $|\theta_i| < \epsilon$ so that, for all n, we have $\Delta(\theta_1, \ldots, \theta_n) \neq 0$.

Proof. The condition $|\theta_i| < \epsilon$ is equivalent to $z_i \in \gamma$, with γ an appropriate arc of $|z| = 1$. First, letting z_1 be any point of γ other than $z = 1$ ensures $\Delta(\theta_1) \neq 0$. Then we observe that $\Delta(\theta_1, \ldots, \theta_n)$ can be expanded as a polynomial in z_n and z_n^{-1}, with leading coefficient $\Delta(\theta_1, \ldots, \theta_{n-1})$. Assuming z_1, \ldots, z_{n-1} have been chosen to satisfy the requirements of the lemma, this coefficient does not vanish, and so $\Delta(\theta_1, \ldots, \theta_n)$ considered as a function of z_n is not identically zero; being analytic in z_n it therefore cannot vanish everywhere for z_n on γ. Thus we may find a point $e^{i2\pi \theta_n} \in \gamma$ such that when $z_n = e^{i2\pi \theta_n}$, $\Delta(\theta_1, \ldots, \theta_n) \neq 0$. By induction, Lemma 2 is established.

Theorem. Given $\epsilon > 0$, there exists a symmetric real sequence $\{\lambda_k\}_{k=-\infty}^{\infty}$ with $|\lambda_k - k| < \epsilon$ such that the functions $\{e^{i2\pi \lambda_k}\}$ are complete in continu-
ous functions on every finite union of the intervals $|x-2n\pi|<\pi-\delta$, with integer n and $\delta>0$.

Proof. We will partition the integers into disjoint subsets, shift each subset by a small amount, and let the sequence $\{\lambda_k\}$ consist of the points so obtained. Then we will show that completeness of the corresponding exponentials on unions of certain intervals is equivalent to completeness on a single interval of $\{e^{ikx}\}$, with k in one subset, and thereby reduce the theorem to a classical result.

Let $S_r, r=1, 2, \ldots$, be the disjoint subsets of the integers defined in Lemma 1, and let $S_r=\{k\mid -k\in S_r\}$. Similarly, let $\theta_r, r=1, 2, \ldots$, be the numbers constructed in Lemma 2, and let $\theta_r=-\theta_r$. Now for $k\in S_r, r=\pm 1, \pm 2, \ldots$, set $\lambda_k=k+\theta_r$, and $\lambda_0=0$. Then the sequence $\{\lambda_k\}_{k=0}^\infty$ is symmetric and $|\lambda_k-k|<\epsilon$.

To prove the theorem we must show that given N and $\delta>0$, the exponentials $\{e^{\lambda_kx}\}$ are complete in $C(S)$, where $S=\bigcup_{n=-N+1}^N I_n$, and I_n is the interval $|x-2n\pi|<\pi-\delta$, or equivalently [4, p. 115] that any bounded measure supported on S which annihilates these exponentials must vanish identically. Accordingly, let $\mu(x)$ be such a measure, and denote by $\mu_n(x-2n\pi)$ the restriction of $\mu(x)$ to I_n. Then $\mu_n(x)$ is a bounded measure supported on I_0, and

$$\mu(x) = \sum_{n=-N+1}^N \mu_n(x-2n\pi).$$

Now by a change of variable,

$$\int_S e^{\lambda_kx}d\mu(x) = \sum_{n=-N+1}^N e^{\lambda_k2n\pi} \int_{I_0} e^{\lambda_kx}d\mu_n(x),$$

and if $k\in S_r, e^{\lambda_k2n\pi}=e^{\theta_r2n\pi}$ and does not depend on k. Thus if $\mu(x)$ annihilates the exponentials $\{e^{\lambda_kx}\}$ for $k\in S_r$, so does

$$\sum_{n=-N+1}^N e^{i\theta_r2n\pi}\mu_n(x),$$

which is a bounded measure supported on the single interval I_0.

We now invoke a known result [3, p. 13]: since by Lemma 1, $\lim sup n/k_n=1$ in each S_r, the set S_r has Polya density 1, and so the exponentials $\{e^{ikx}\}$ for $k\in S_r$ are complete in continuous functions on any interval of length less than 2π, in particular on I_0. By definition of the set $\{\lambda_k\}$ for $k\in S_r$ as a translate of S_r, the same is true of the exponentials $\{e^{\lambda_kx}\}, k\in S_r$, and consequently the measure (2) on I_0 which annihilates them must vanish identically. We conclude
for each r. Writing (3) with $r = \pm 1, \pm N$ yields a system of $2N$ linear equations for the $2N$ measures $\mu_n(x)$, $-N+1 \leq n \leq N$, whose determinant is precisely $\Delta(\theta_1, \cdots, \theta_N)$ and so, by Lemma 2, does not vanish. Thus the only solution to this system is $\mu_n(x) \equiv 0$, $-N+1 \leq n \leq N$, whence $\mu(x) \equiv 0$ by (1). This completes the proof of the theorem.

Remarks. 1. By an obvious modification of the proof, the exponentials $\{e^{ikx}\}$ with $k \in S_r$ for $r > 0$ have the same completeness property.

2. We may give a constructive proof of the theorem along the same lines. Shifting each I_n to I_0 transforms the problems of approximating a continuous function on S by linear combinations of the exponentials $\{e^{ikx}\}$ into that of solving a system of linear equations on I_0 with nonzero determinant, and thereby again reduces matters to approximating on I_0 by linear combinations of $\{e^{ikx}\}$ for $k \in S_r$.

BIBLIOGRAPHY

Bell Telephone Laboratories