Periodic maps which preserve a complex structure
Authors:
P. E. Conner and E. E. Floyd
Journal:
Bull. Amer. Math. Soc. 70 (1964), 574-579
DOI:
https://doi.org/10.1090/S0002-9904-1964-11204-0
MathSciNet review:
0164356
Full-text PDF Free Access
References | Additional Information
- P. E. Conner and E. E. Floyd, Differentiable periodic maps, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Band 33, Academic Press Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1964. MR 0176478 2. P. E. Conner and E. E. Floyd, Cobordism theories, Seattle Conference on Differential and Algebraic Topology (mimeographed), Amer. Math. Soc. Providence, R. I., 1963.
- P. E. Conner and E. E. Floyd, Fixed point free involutions and equivariant maps. II, Trans. Amer. Math. Soc. 105 (1962), 222–228. MR 143208, DOI https://doi.org/10.1090/S0002-9947-1962-0143208-6
- J. Milnor, On the cobordism ring $\Omega ^{\ast } $ and a complex analogue. I, Amer. J. Math. 82 (1960), 505–521. MR 119209, DOI https://doi.org/10.2307/2372970
- George W. Whitehead, Generalized homology theories, Trans. Amer. Math. Soc. 102 (1962), 227–283. MR 137117, DOI https://doi.org/10.1090/S0002-9947-1962-0137117-6
- Karl-Günter Zelle, Symmetrien von Mannigfaltigkeiten und charakteristische Zahlen, Bonn. Math. Schr. 22 (1964), viii+93 (German). MR 180988