ON THE SYMMETRY OF CONVEX BODIES

BY G. D. CHAKERIAN AND S. K. STEIN

Communicated by Victor Klee, February 9, 1964

We say that a convex body in \(n \)-dimensional Euclidean space \(E_n \) is "\(k \)-symmetric" if it coincides with its reflection through some \(k \)-plane. Let \(K \) be an \(n \)-dimensional convex body and \(K' \) a \(k \)-symmetric convex body of maximum volume contained in \(K \). Define

\[
c(K; k) = \frac{V(K')}{V(K)},
\]

where \(V(K) \) is the volume of \(K \). Let

\[
c(n, k) = \inf \{ c(K; k) : K \subset E_n \}.
\]

Theorem 1.

\[
c(n, k) \geq \max \left\{ k!, (n - k)! \right\} \frac{2^{n-k}}{2^n}, \quad 0 \leq k < n.
\]

This generalizes the result, \(c(n, 0) > 2^{-n} \), proved in [3].

One can also consider \(K \) as a nonhomogeneous solid with density \(f(p) \) at each \(p \in K \), and ask for a symmetric subset of maximum mass. Restricting ourselves to the case of \(0 \)-symmetry (i.e., central symmetry), we define for each integrable density \(f \) on \(K \)

\[
\mu(K; f) = \frac{M(K')}{M(K)},
\]

where \(K' \) is a centrally symmetric convex body of maximum mass contained in \(K \), and \(M(K) \) is the mass of \(K \). Let \(\mu(K) \) be the infimum of \(\mu(K; f) \), for \(f \) ranging over all integrable densities, and define

\[
\mu(n) = \inf \{ \mu(K) : K \subset E_n \}.
\]

Theorem 2. \(\mu(n) \geq 2^{-n}, \quad n \geq 3, \) and \(\mu(2) = 1/3. \)

The first inequality follows from an obvious generalization of the computation of "mean symmetry" used in [3], while the second equality depends on the fact (see Theorem 4) that any plane convex body is the union of 3 centrally symmetric convex bodies.

Let \(g(n) \) be the least number \(r \) such that any \(n \)-dimensional convex body \(K \) can be covered by \(r \) translates of \(-K\) (equivalently, \(g(n) \) is the least number \(r \) such that any \(n \)-dimensional convex body is the
ON THE SYMMETRY OF CONVEX BODIES

union of r centrally symmetric bodies). Grünbaum [2] defines the number $h(n)$ as the least number r with the following property: if \mathcal{F} is any family of pairwise intersecting translates of a convex body $K \subset \mathbb{R}^n$, then there exist r points such that each member of \mathcal{F} contains at least one of them.

Theorem 3. $h(n) \leq g(n) \leq c(n, 0)^{-1}$, for all n.

It is shown in [1] that

$$c(n, 0) < \sqrt{\frac{2}{\pi}} \left(\frac{2}{e}\right)^n \left(\frac{n}{n+1}\right)^{n-1} \sqrt{n+1}.$$

Together with Theorem 3, this implies that $h(n)$ grows faster than any fixed power of n, showing that the conjecture of [2], viz. $h(n) \leq n+1$, is false. Indeed, the conjecture fails for $n = 3$, since $g(3) \geq 7$.

The last inequality follows from the fact that a tetrahedron T in \mathbb{R}^3 cannot be covered with fewer than 7 translates of $-T$. In \mathbb{R}^2 we have a sharp result.

Theorem 4. $g(2) = 3$.

References

University of California, Davis