THE RECURSIVE EQUIVALENCE TYPE OF
A CLASS OF SETS

BY J. C. E. DEKKER

Communicated by P. R. Halmos, February 28, 1964

1. Introduction. Let us consider non-negative integers (numbers),
collections of numbers (sets) and collections of sets (classes). The
letters ε and \varnothing stand for the set of all numbers and the empty set
of numbers respectively. We write \subseteq for inclusion, proper or improper.
A mapping from a subset of ε into ε is called a function; if f is a func-
tion, we denote its domain and its range by δf and ρf respectively. Let
a class of mutually disjoint nonempty sets be called an md-class; such
a class is therefore countable, i.e., finite or denumerable. We recall
that the recursive equivalence type (abbreviated: RET) of a set α,
denoted by $\text{Req}(\alpha)$, is defined [1, p. 69] as the class of all sets which
are recursively equivalent to α. We wish to consider the problem:
"How can we define the RET of an md-class in a natural manner?"
Throughout this note S stands for an md-class and σ for the union of
all sets in S; for every $x \in \sigma$ we denote the unique set α such that
$x \in \alpha \subseteq S$ by α_x.

DEFINITIONS. A set γ is a choice set of S, if
(1) $\gamma \subseteq \sigma$,
(2) γ has exactly one element in common with each set in S.
The set γ is a good choice set of S (abbreviated: gc-set), if it also
satisfies
(3) there exists a partial recursive function $p(x)$ such that $\sigma \subseteq \delta p$
and $(\forall x)[x \in \sigma \Rightarrow p(x) \in \gamma \cdot \alpha_x]$.

Consider the special case that the md-class S is a finite class of
finite sets. Then
(a) every choice set of S is a good choice set,
(b) every two choice sets of S are recursively equivalent,
(c) every two good choice sets of S are recursively equivalent.

If the md-class S is infinite, (a) and (b) need no longer be true.
For let S contain infinitely many sets of cardinality ≥ 2, e.g.,
$S = ((0, 1), (2, 3), (4, 5), \cdots)$. Then S has ε choice sets. Every good
choice set of S has the form $p(\sigma)$ for some partial recursive function
$p(x)$, hence S has at most \aleph_0 good choice sets and (a) is false. Every
nonzero RET contains exactly \aleph_0 sets; the ε choice sets of S can
therefore not all be recursively equivalent and (b) is false. On the

1 This paper was written while the author was supported by a grant from the Rut-
gers Research Council.
other hand, (c) still holds. For we have

Proposition P1. Every two good choice sets of an md-class are recursively equivalent.

Note that (a) does not even hold for every finite class consisting of two infinite sets. For let \(S = (\tau, \tau') \), where \(\tau \) and \(\tau' \) are complementary immune sets. Then \(S \) has denumerably many choice sets, but if \(S \) had a good choice set, \(\tau \) and \(\tau' \) would be recursive. For every md-class \(S \) we write \(\xi(S) \) for the class of all gc-sets of \(S \). If \(\xi(S) \) is nonempty, \(S \) is called a gc-class. The class \((\tau, \tau') \) mentioned above is an example of an md-class which is not a gc-class. P1 enables us to give the

Definition. For any gc-class \(S \),

\[
\text{RET}(S) = \text{Req}(\gamma), \quad \text{for any } \gamma \in \xi(S).
\]

If \(S \) is a finite md-class of finite sets, \(S \) is a gc-class and \(\text{RET}(S) \) equals the cardinality of \(S \). We need not exclude the trivial case that \(S \) is empty, for then \(\xi(S) \) contains exactly one set, namely \(o \).

2. **Elementary properties.** The sets \(\alpha_0, \ldots, \alpha_n \) are separable if there exist mutually disjoint r.e. sets \(\beta_0, \ldots, \beta_n \) such that \(\alpha_i \subseteq \beta_i \), for \(0 \leq i \leq n \). We write \(\alpha_0 | \alpha_1 \) if \(\alpha_0 \) and \(\alpha_1 \) are separable.

Proposition P2. The finite md-class \(S = (\alpha_0, \ldots, \alpha_n) \) is a gc-class if and only if \(\alpha_0, \ldots, \alpha_n \) are separable; if \(S \) is a gc-class, each choice set of \(S \) is a gc-set and \(\text{RET}(S) \) equals the cardinality of \(S \).

A gc-class is called isolated if each (or equivalently, at least one) of its gc-sets is isolated. In other words, a gc-class is isolated if its RET is an isol. For every nonempty gc-class \(S \) we have: \(\sigma \) is a finite set if and only if \(S \) is a finite class of finite sets. Similarly,

Proposition P3. Let \(S \) be a nonempty gc-class. Then \(\sigma \) is an isolated set if and only if \(S \) is an isolated class of isolated sets.

Two classes \(S_1 \) and \(S_2 \) with unions \(\sigma_1 \) and \(\sigma_2 \) respectively are separable if \(\sigma_1 \mid \sigma_2 \). For any two classes \(A \) and \(B \) we write

\[
A \times B = \{j(\alpha \times \beta) \mid \alpha \in A \text{ and } \beta \in B\},
\]

where \(j(x, y) = x + (x+y)(x+y+1)/2 \).

Proposition P4. Let \(S_1 \) and \(S_2 \) be separable md-classes. Then \(S_1 \cup S_2 \) is an md-class and

(a) \(S_1 \cup S_2 \) is a gc-class if and only if both \(S_1 \) and \(S_2 \) are gc-classes,

(b) if \(S_1 \cup S_2 \) is a gc-class, \(\text{RET}(S_1 \cup S_2) = \text{RET}(S_1) + \text{RET}(S_2) \).
PROPOSITION P5. Let \(S_1 \) and \(S_2 \) be nonempty md-classes. Then \(S_1 \times S_2 \) is a nonempty md-class and
(a) \(S_1 \times S_2 \) is a gc-class if and only if both \(S_1 \) and \(S_2 \) are gc-classes,
(b) if \(S_1 \times S_2 \) is a gc-class, \(\text{RET}(S_1 \times S_2) = \text{RET}(S_1) \cdot \text{RET}(S_2) \).

3. The class Bin(\(\alpha \)). Let \(\{ \rho_n \} \) be the canonical enumeration of the class of all finite sets \([2, \text{p. 81}] \) and \(r_n = \text{cardinality of } \rho_n \). For any set \(\alpha \) and any number \(k \) we write
\[
C(\alpha, k) = \{ n \mid \rho_n \subset \alpha \text{ and } r_n = k \}, \quad \text{Bin}(\alpha) = \{ C(\alpha, k) \mid k \geq 1 \}.
\]
Note that Bin(\(\alpha \)) is an md-class for any set \(\alpha \); if \(\alpha \) is a finite set of cardinality \(n \), the members of Bin(\(\alpha \)) are separable and Bin(\(\alpha \)) is a gc-class with \(n \) as cardinality and RET. For any infinite set \(\alpha \), Bin(\(\alpha \)) is a denumerable md-class of infinite sets; the next proposition tells us when Bin(\(\alpha \)) is a gc-class. We write \(\text{Req}(\epsilon) = R \) and refer to [2, pp. 80, 84] for the definition of a regressive set and a regressive isol.

PROPOSITION P6. Let \(\alpha \) be infinite and \(A = \text{Req}(\alpha) \). Then
(a) if \(\alpha \) has an infinite r.e. subset, Bin(\(\alpha \)) is a gc-class of RET R,
(b) if \(\alpha \) is a regressive set, Bin(\(\alpha \)) is a gc-class of RET A,
(c) if \(\alpha \) is immune, but not regressive, Bin(\(\alpha \)) is not a gc-class.

It follows that among the \(c \) existing md-classes of immune sets, exactly \(c \) are gc-classes and exactly \(c \) are not. It is shown in [3] that though the collection \(\Lambda_R \) of all regressive isols is not closed under addition one multiplication, one can extend the \(\text{min}(x, y) \) function from \(e^2 \) into \(\epsilon \) in a natural manner to a \(\text{min}(X, Y) \) function from \(\Lambda_R^2 \) into \(\Lambda_R \). However, \(\text{min}(X, Y) \) need no longer assume one of the values \(X \) and \(Y \).

PROPOSITION P7. Let \(\alpha, \beta \) be two nonempty isolated sets, \(A = \text{Req}(\alpha) \)
\(B = \text{Req}(\beta) \) and
\[
S = \{ j(\xi \times \eta) \mid (\exists n)(n \geq 1 \text{ and } \xi = C(\alpha, n) \text{ and } \eta = C(\beta, n)) \}.
\]
If \(\alpha \) and \(\beta \) are regressive, i.e., \(A, B \subseteq \Lambda_R \) then \(S \) is a gc-class with \(\text{RET}(S) = \text{min}(A, B) \).

It can be shown that \(S \) may be a gc-class while the sets \(\alpha \) and \(\beta \) are immune, but not both regressive.

DEFINITIONS. Let \(p(x) \) be a partial recursive function and \(S \) a gc-class. Then \(p(x) \) is a gc-function of \(S \), if
(\alpha) \sigma \subseteq \delta \rho \text{ and } \rho(\sigma) \subseteq \xi(S),
(\beta) (\forall x) [x \in \sigma \Rightarrow p(x) \subseteq \rho(\sigma) \cdot \alpha_x],
(\gamma) \rho \delta \rho \subseteq \delta \rho \text{ and } (\forall x) [x \in \delta \rho \Rightarrow p^2(x) = p(x)].

A gc-function is a partial recursive function which is a gc-function of at least one gc-class.

Every gc-class has at least one gc-function. For if a partial recursive function \(p(x) \) is related to \(S \) by \((\alpha) \) and \((\beta) \), then \(p(x) \) has a restriction which satisfies \((\alpha) \), \((\beta) \) and \((\gamma) \). With every partial recursive function \(p(x) \) we associate the md-class \(\text{Gen}(\rho) = \{ p^{-1}(y) \mid y \in \rho \delta \rho \} \) of r.e. sets. This md-class is empty if and only if \(p(x) \) is nowhere defined.

Proposition P8. A partial recursive function \(p(x) \) is a gc-function if and only if it satisfies \((\gamma) \). Moreover, if \(p(x) \) satisfies \((\gamma) \), it is a gc-function of the class \(S = \text{Gen}(\rho) \) with \(\sigma = \delta \rho \) and \(\rho(\sigma) = \rho \delta \rho \subseteq \xi(S) \).

Proposition P9. Let \(p(x) \) be a gc-function of the gc-class \(S \). Then
\[
\delta \rho = \sigma \iff S = \text{Gen}(\rho).
\]

Definition I. A class \(S \) is primitive, if it satisfies one of the three conditions: (i) \(S \) is empty, (ii) \(S \) is a nonempty, finite md-class of r.e. sets, (iii) \(S \) is a denumerable md-class of r.e. sets and there exists a recursive function \(a(n, x) \) such that if \(\alpha_n = p a(n, x) \), then \(S \) consists of the distinct sets \(\alpha_0, \alpha_1, \cdots \).

Definition II. A class \(S \) is primitive, if it is a gc-class with a gc-function \(p(x) \) such that \(S = \text{Gen}(\rho) \).

Definition III. A class \(S \) is primitive, if \(S = \text{Gen}(\rho) \) for some partial recursive function \(p(x) \).

Proposition P10. The three definitions of a primitive class are equivalent.

Corollary. A class \(S \) is primitive if and only if it is a gc-class with a gc-function \(p(x) \) such that \(\delta \rho = \sigma \).

Definition. An md-class \(T \) is a restriction of the gc-class \(S \), if
(a) for every \(\beta \subseteq T \), there is an \(\alpha_0 \) such that \(\beta \subseteq \alpha_0 \subseteq S \),
(b) there is a \(\gamma \subseteq \xi(S) \) such that \(\beta \subseteq T \Rightarrow \gamma \cdot \alpha_0 \subseteq \beta \).

Proposition P11. An md-class is a gc-class if and only if it is a restriction of some primitive gc-class.

While there are \(c \) gc-classes, only \(\mathbb{N}_0 \) of them are primitive. For each RET \(A \) there exists a gc-class with \(A \) as its RET, but a primitive class can only have one of 0, 1, \(\cdots \), \(R \) as its RET. The gc-sets of a primitive class \(P \) are readily characterized. For if \(P \) is finite, the gc-sets of \(P \) are the choice sets of \(P \), and if \(P \) is infinite, say.
\[P = (\alpha_0, \alpha_1, \cdots), \quad \alpha_n = \rho a(n, x), \]

\(a(n, x) \) a recursive function, then \(\gamma \in \xi(p) \) if and only if \(\gamma = \rho a(f_n, u_n) \), for a recursive permutation \(f_n \) and a recursive function \(u_n \). Finally, the restrictions of any given primitive class can be simply described. Thus Proposition P11 serves a purpose.

REFERENCES

Rutgers, the State University