Taming Cantor sets in $E^n$
HTML articles powered by AMS MathViewer
- by D. R. McMillan Jr. PDF
- Bull. Amer. Math. Soc. 70 (1964), 706-708
References
-
1. L. Antoine, Sur l’homéomorphie de deux figures et de leurs voisinages, J. Math. Pures Appl. 86 (1921), 221-325.
- R. H. Bing, Tame Cantor sets in $E^{3}$, Pacific J. Math. 11 (1961), 435–446. MR 130679, DOI 10.2140/pjm.1961.11.435
- William A. Blankinship, Generalization of a construction of Antoine, Ann. of Math. (2) 53 (1951), 276–297. MR 40659, DOI 10.2307/1969543
- Karol Borsuk, An example of a simple arc in space whose projection in every plane has interior points, Fund. Math. 34 (1947), 272–277. MR 25721, DOI 10.4064/fm-34-1-272-277
- Samuel Eilenberg and R. L. Wilder, Uniform local connectedness and contractibility, Amer. J. Math. 64 (1942), 613–622. MR 7100, DOI 10.2307/2371708
- V. K. A. M. Gugenheim, Piecewise linear isotopy and embedding of elements and spheres. I, II, Proc. London Math. Soc. (3) 3 (1953), 29–53, 129–152. MR 58204, DOI 10.1112/plms/s3-3.1.29 7. J. P. Hempel and D. R. McMillan, Jr., Locally nice embeddings of manifolds (to appear).
- Tatsuo Homma, On tame imbedding of $0$-dimensional compact sets in $E^{3}$, Yokohama Math. J. 7 (1959), 191–195. MR 124037
- A. Kirkor, Wild $0$-dimensional sets and the fundamental group, Fund. Math. 45 (1958), 228–236. MR 102783, DOI 10.4064/fm-45-1-237-246
- D. R. McMillan Jr., A criterion for cellularity in a manifold, Ann. of Math. (2) 79 (1964), 327–337. MR 161320, DOI 10.2307/1970548 11. M. H. A. Newman, On the superposition of n-dimensional manifolds, J. London Math. Soc. 2 (1927), 56-64. 12. J. H. C. Whitehead, On subdivisions of complexes, Proc. Cambridge Philos. Soc. 31 (1935), 69-75.
Additional Information
- Journal: Bull. Amer. Math. Soc. 70 (1964), 706-708
- DOI: https://doi.org/10.1090/S0002-9904-1964-11177-0
- MathSciNet review: 0164331