The Gauss-Bonnet theorem and the Tamagawa number
HTML articles powered by AMS MathViewer
- by Takashi Ono PDF
- Bull. Amer. Math. Soc. 71 (1965), 345-348
References
- Carl B. Allendoerfer and André Weil, The Gauss-Bonnet theorem for Riemannian polyhedra, Trans. Amer. Math. Soc. 53 (1943), 101–129. MR 7627, DOI 10.1090/S0002-9947-1943-0007627-9
- Shiing-shen Chern, A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds, Ann. of Math. (2) 45 (1944), 747–752. MR 11027, DOI 10.2307/1969302
- C. Chevalley, Sur certains groupes simples, Tohoku Math. J. (2) 7 (1955), 14–66 (French). MR 73602, DOI 10.2748/tmj/1178245104
- Sigurđur Helgason, Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. XII, Academic Press, New York-London, 1962. MR 0145455
- N. Iwahori and H. Matsumoto, On some Bruhat decomposition and the structure of the Hecke rings of ${\mathfrak {p}}$-adic Chevalley groups, Inst. Hautes Études Sci. Publ. Math. 25 (1965), 5–48. MR 185016, DOI 10.1007/BF02684396
- Ichirô Satake, The Gauss-Bonnet theorem for $V$-manifolds, J. Math. Soc. Japan 9 (1957), 464–492. MR 95520, DOI 10.2969/jmsj/00940464
- Carl Ludwig Siegel, Symplectic geometry, Amer. J. Math. 65 (1943), 1–86. MR 8094, DOI 10.2307/2371774
- André Weil, Adèles et groupes algébriques, Séminaire Bourbaki, Vol. 5, Soc. Math. France, Paris, 1995, pp. Exp. No. 186, 249–257 (French). MR 1603471 9. A. Weil, Adèles and algebraic groups, Lecture Notes, Institute for Advanced Study, Princeton, N. J., 1961.
Additional Information
- Journal: Bull. Amer. Math. Soc. 71 (1965), 345-348
- DOI: https://doi.org/10.1090/S0002-9904-1965-11290-3
- MathSciNet review: 0176986