The cohomology of the Steenrod algebra; stable homotopy groups of spheres
Author:
J. Peter May
Journal:
Bull. Amer. Math. Soc. 71 (1965), 377-380
DOI:
https://doi.org/10.1090/S0002-9904-1965-11302-7
MathSciNet review:
0185596
Full-text PDF Free Access
References | Additional Information
- J. F. Adams, On the structure and applications of the Steenrod algebra, Comment. Math. Helv. 32 (1958), 180–214. MR 96219, DOI https://doi.org/10.1007/BF02564578 2. J. F. Adams, Stable homotopy theory (lecture notes), Univ. of California, Berkeley, Calif., 1961.
- Hillel H. Gershenson, Relationships between the Adams spectral sequence and Toda’s calculations of the stable homotopy groups of spheres, Math. Z. 81 (1963), 223–259. MR 151976, DOI https://doi.org/10.1007/BF01111545
- J. Peter May, The cohomology of restricted Lie algebras and of Hopf algebras, Bull. Amer. Math. Soc. 71 (1965), 372–377. MR 185595, DOI https://doi.org/10.1090/S0002-9904-1965-11300-3
- Hirosi Toda, $p$-primary components of homotopy groups. I. Exact sequences in Steenrod algebra, Mem. Coll. Sci. Univ. Kyoto Ser. A. Math. 31 (1958), 129–142. MR 105682, DOI https://doi.org/10.1215/kjm/1250776909
- Hirosi Toda, Composition methods in homotopy groups of spheres, Annals of Mathematics Studies, No. 49, Princeton University Press, Princeton, N.J., 1962. MR 0143217