ON THE FACIAL STRUCTURE OF CONVEX POLYTOPIES

BY BRANKO GRÜNBAUM

Communicated by E. Dyer, January 7, 1965

A finite family \(C \) of convex polytopes in a Euclidean space shall be called a complex provided

(i) every face of a member of \(C \) is itself a member of \(C \);
(ii) the intersection of any two members of \(C \) is a face of both.

If \(P \) is a \(d \)-polytope (i.e., a \(d \)-dimensional convex polytope) we shall denote by \(B(P) \) the boundary complex of \(P \), i.e., the complex consisting of all faces of \(P \) having dimension \(d-1 \) or less. By \(C(P) \) we shall denote the complex consisting of all the faces of \(P \); thus \(C(P) = B(P) \cup \{P\} \). For a complex \(C \) we define \(\text{set}(C) = \bigcup_{C \in C} C \). For an element \(C \) of a complex \(C \) the closed star [anti-star] of \(C \) (in \(C \)) is the smallest subcomplex of \(C \) containing all the members of \(C \) which contain \(C \) [do not meet \(C \)]. The linked complex of \(C \) in \(C \) is the intersection of the closed star of \(C \) with the anti-star of \(C \).

A complex \(C \) is a refinement of a complex \(K \) provided there exists a homeomorphism \(\phi \) carrying \(\text{set}(C) \) onto \(\text{set}(K) \) such that for every \(K \subseteq K \) there exists a subcomplex \(C_K \) of \(C \) with \(\phi^{-1}(K) = \text{set}(C_K) \).

For example, the complex \(K_1 \) consisting of two triangles with a common edge is a refinement of the complex \(K_2 \) consisting of one triangle; note, however, that the 1-skeleton of \(K_1 \) is not a refinement of the 1-skeleton of \(K_2 \). Let \(\Delta^d \) denote the \(d \)-simplex. The following result is simple but rather useful:

Theorem 1. For every \(d \)-polytope \(P \) the complex \(C(P) \) is a refinement of \(C(\Delta^d) \).

Proof. The assertion of the theorem is obviously equivalent to the following statement:

Theorem 1*. For every \(d \)-polytope \(P \) the complex \(B(P) \) is a refinement of \(B(\Delta^d) \).

We shall prove the theorem in the second formulation, using induction on \(d \). The case \(d = 1 \) being trivial, we may assume \(d \geq 2 \). Let \(V \) be a vertex of \(P \) and let \(H \) be a \((d-1)\)-plane intersecting (in relatively interior points) all the edges of \(P \) incident to \(V \). Then \(P_0 = P \cap H \) is a \((d-1)\)-polytope, and, by the inductive assumption, \(B(P_0) \) is a refinement of \(B(\Delta^{d-1}) \). Let \(S \) denote the closed star of \(V \) in \(B(P) \).
Using radial maps from V, it is obvious that the linked complex L of V in $B(P)$ (i.e., the subcomplex of S consisting of all the members of S which do not contain V) is a refinement of $B(P_0)$ and thus of $B(\Delta^{d-1})$, while S is a refinement of the closed star S^* of a vertex of $B(\Delta^d)$.

On the other hand, denoting by A the anti-star of V in $B(P)$, set(A) is homeomorphic to the $(d-1)$-cell Δ^{d-1} by a homeomorphism carrying set(L) onto the boundary of Δ^{d-1}. Since L is a refinement of $B(\Delta^{d-1})$, it follows that A is a refinement of $C(\Delta^{d-1})$. Together with the earlier established fact that S is a refinement of S^* this implies (since, on L, the two refinements may be chosen to coincide) that $B(P)$ is a refinement of $B(\Delta^d)$, as claimed.

As an immediate consequence of Theorem 1 we obtain the following result [2, Theorem 3]:

COROLLARY 1. Every d-polyhedral graph contains a refinement of the complete graph with $d+1$ nodes.

REMARK. The author is indebted to Dr. Micha Perles for the observation that the proof of Corollary 1, as given in [2], is incomplete, and for indicating how the construction in [2] has to be changed in order to yield a satisfactory proof.

Theorem 1 yields trivially also the following generalization of Corollary 1:

COROLLARY 2. For every k, $0 \leq k \leq d$, the k-skeleton of any d-polytope contains a refinement of the k-skeleton of Δ^d.

We recall the interesting result of Flores [1] (see also Hurewicz-Wallman [3, p. 63]):

The n-skeleton of Δ^{2n+2} is not homeomorphic to a subset of Euclidean $2n$-space.

Using Schlegel-diagrams, Corollary 2 and Flores' theorem imply:

THEOREM 2. The n-skeleton of a $(2n+1)$-polytope is not homeomorphic to the n-skeleton of a d-polytope for $d \geq 2n+2$.

REFERENCES

HEBREW UNIVERSITY OF JERUSALEM