The object of this paper is to gain some information about the unstable piecewise linear groups. The tool that we use for this purpose is the s-cobordism theorem (which has been established for piecewise linear manifolds by J. Stallings [9] and D. Barden [1]). All manifolds and micro-bundles in this paper are piecewise linear, unless otherwise specified.

Theorem 1. Let M^m be a compact manifold such that $\pi_1(\partial M) \cong \pi_1 M$ by inclusion, and let $f : K^k \to M^m$ be a simple homotopy equivalence of a finite simplicial k-complex with M. Then if $m \geq 6$, $m \geq 2k + 1$, there is a compact manifold L such that $\pi_1(\partial L) \cong \pi_1 L$, and $L \times I \cong M$. If $m \geq 7$, $m \geq 2k + 2$, L is uniquely determined.

Proof. We first observe that the pair $(M, \partial M)$ is $(m - k - 1)$-connected. Indeed, since inclusion induces an isomorphism of fundamental groups, we can use the relative Hurewicz theorem to compute the first nonvanishing relative homotopy group: $\pi_1(M, \partial M) \cong \pi_1(\tilde{M}, \partial \tilde{M})$ (where \tilde{M} denotes the universal cover), $\pi_1(\tilde{M}, \partial \tilde{M}) \cong H_1(\tilde{M}, \partial \tilde{M}) \cong H^{m-i}(\tilde{M})$, by duality, where c denotes compact cohomology, and $H^{m-i}(\tilde{M}) \cong H^{m-i}(\tilde{K})$ vanishes for $i < m - k$.

It follows that for $m \geq 2k + 1$, f is homotopic to a map $g : K \to \partial M$. If, now $m \geq 2k + 2$ we can move g into general position (see e.g. [11, Chapter 6, Theorem 18]) and so suppose it an imbedding. Take a regular neighbourhood L of $g(K)$ in ∂M. Then L is a manifold, and the inclusion $L \subset M$ is a simple homotopy equivalence.

If $m = 2k + 1$, g will in general have singularities, transverse self-intersections of k-simplexes of K. For each such selfintersection $Q = g(P_1) = g(P_2)$, we join P_1 to P_2 by a path α in K such that $g(\alpha)$ is a nullhomotopic loop (since $g_* : \pi_1(K) \to \pi_1(\partial M)$ is onto, this is possible). As $k \geq 3$, we can now map a disc D^2 into ∂M, with its interior imbedded, and meeting $g(K)$ only in its boundary, which is attached along $g(\alpha)$. Proceeding thus for each selfintersection Q, we obtain an imbedding of a complex K' simply homotopy-equivalent to K; we can then take a regular neighbourhood to obtain L, as above. Note in either case that as regular neighbourhood of a subcomplex K' of codimension ≥ 3, L has the property $\pi_1(\partial L) \cong \pi_1 L$, for ∂L is a deformation retract of $L - K'$.
Take a collar neighbourhood \(\partial L \times I \) of \(L \) in \(\partial M \) (this is possible since \(L \) is a submanifold); let \(L^1 \) be the closure of the complement of \(L \cup (\partial L \times I) \) in \(\partial M \). We regard \(M \) as a cobordism of \(L \) and \(L^1 \): along the 'edge', \(\partial L \times I \) is a product cobordism of \(\partial L \) and \(\partial L^1 \). Also, the inclusion of \(L \) in \(M \) is a simple homotopy equivalence. To show that \(M \) is an s-cobordism, it remains only to check that the inclusion \(L^1 \subset M \) induces an isomorphism of \(\pi_1 \). Now the complement of \(L^1 \) in \(\partial M \) is a regular neighbourhood of a \(k \)-complex, which has codimension \(\geq 3 \), so \(\pi_1(L^1) \cong \pi_1(\partial M) \); and by hypothesis, \(\pi_1(\partial M) \cong \pi_1(M) \). Hence \(M \) is an s-cobordism which along the edge is a product cobordism; by the s-cobordism theorem, \(M \) is a product: \(M \cong L \times I \).

For the proof of uniqueness, we first show that \(L \) is in any case the regular neighbourhood of a \(k \)-complex, given \(m \geq k + 4 \), \(m \geq 6 \). For by assumption \(\pi_1(\partial L) = \pi_1(L) \); now, as in the proof of existence, \((L, \partial L) \) is \((m - k - 2)\)-connected. By [10, Theorem 5.5], if \(k \geq 2 \), \(L \) has a handle decomposition based on \(\partial L \) with no \(i \)-handles for \(i \leq m - k - 2 \); the dual decomposition has no \(j \)-handles for \(j > k \), and so \(L \) collapses onto a \(k \)-dimensional spine. If \(k = 1 \), since \(m \geq 6 \) we can imbed \(K \) in \(L \) by a simple homotopy equivalence and take a regular neighbourhood \(L' \) of the image; by [10, Theorem 6.4] (a variant of the s-cobordism theorem) \(L \) is diffeomorphic to \(L' \). We observe that the arguments of [10] can be justified for PL-manifolds by using results from [1] or [9]; we could also use a PL version of the nonstable neighbourhood theorem of Mazur [7, p. 54].

Suppose then \(M = L_1 \times I \cong L_2 \times I \), and consider the image of \(L_2 \times 0 \) in \(\partial M \). Since \(\partial M \) has dimension \(\geq 2k + 1 \), we can deform this to be disjoint from \(L_1 \times 1 \), and then a further deformation puts it in the interior of \(L_1 \times 0 \). Write \(H \) for the closure of \((L_1 \times 0) - (L_2 \times 0) \); we assert that \(H \) is an s-cobordism, and hence a product \(\partial L_2 \times I \), so that \(L_1 \) is homeomorphic to \(L_2 \). This can be proved algebraically, or we can use a direct argument by cancellation of handles: for details see Wall [10, Theorem 6.4].

We now consider piecewise linear micro-bundles. The basic information on these is contained in Milnor [8]. We write \(e \) for the trivial micro-bundle with fibre \(R^e \).

Corollary 1.1. For any micro-bundle \(\xi^e \) over \(K^k \), we can write \(\xi^e + e^{2k} \cong e^e + \eta^{2k} \) for a suitable micro-bundle \(\eta^{2k} \) of fibre dimension \(2k \). (If \(k = 2 \), replace \(2k \) by \(5 \).)

Proof. First suppose \(k \geq 3 \). Then, as in the theorem, we can imbed some complex simple homotopy-equivalent to \(K \) in \(R^{2k} \); thicken it, and call the result \(L \). The tangent micro-bundle of \(L \) is \(e^{2k} \). Take the
total space M^1 of the micro-bundle induced over L by ξ^r, and let M be a regular neighbourhood of L in M^1: this has tangent micro-bundle $\xi^r + e^{2k}$. Now by iterating the theorem, we can write $M = N^{2k} \times D^r$, so if η^{2k} is the tangent micro-bundle of N^{2k}, the result follows.

If $k = 2$, we replace R^4 by R^6, so L has dimension 5. The argument concludes as before.

Corollary 1.2. Suppose ξ^r and η^r are stably equivalent micro-bundles over K^k. Then $\xi^r + e^{2k} \simeq \eta^r + e^{2k}$. (If $k = 2$, replace 2k by 5.)

Proof. Construct L as above; take regular neighbourhoods X and Y of L in the micro-bundles induced over L by ξ and η. Since ξ and η are stably equivalent, for some s, $X \times D^s \simeq Y \times D^s$. Since X and Y have dimension $2k + r \geq 2k + 1$, it follows by iterating the uniqueness part of Theorem 1 that X and Y are PL-homeomorphic. Hence their tangent micro-bundles $\xi^r + e^{2k}$, $\eta^r + e^{2k}$ are equivalent.

Remark 1. To classify micro-bundles over a 1-complex, it is sufficient to be able to do it over a circle; for this we only need $\pi_0(\text{PL}_m)$, which is well known to be \mathbb{Z}_2. Thus if $k = 1$, we have $\xi^r = e^{-1} + \eta^1$, and stably equivalent micro-bundles are equivalent.

Theorem 2. Suppose K^k a compact unbounded piecewise linear submanifold of M^m. Then if $m \geq 3k$, K^k has a piecewise linear normal microbundle in M^m.

Proof. First assume $k \geq 3$. According to Milnor [8, Theorem 4], for some n, K^k has a normal micro-bundle ξ^r in $M^m \times R^n$. By the above corollary, write $\xi^r + e^{2k} = \eta^r + e^{2k}$; let N_1 be a regular neighbourhood of K in the total space of $\eta + e^{m-2k}$, N_2 a regular neighbourhood of K in M. Then $N_1 \times D^n$, $N_2 \times D^n$ are both regular neighbourhoods of K in $M \times R^n$, hence are PL-homeomorphic.

By Theorem 1, if $m \geq 6$, N_1 and N_2 are PL-homeomorphic. We assert that there is even a PL-homeomorphism inducing the identity on the subcomplex K. Granted this, K has a normal micro-bundle in N_1, hence also in N_2, and so in M.

Write $i_1: K \to N_1$, $i_2: K \to N_2$ for the inclusions, and $f: N_1 \to N_2$ for the PL-homeomorphism constructed above. Then, by the construction of f, $f i_1 \simeq i_2$. Since $\dim N_2 = 3k \geq 2k + 2$, homotopic imbeddings are isotopic. By the covering isotopy theorem of Hudson and Zeeman [5], since $(a k \geq 2)$ the codimension is ≥ 3, we can cover the isotopy of K in N by an isotopy h_t of N. Hence $h_f i_1 = i_2$. The homeomorphism $h f$ now has the required properties.

In low dimensions we can use a different argument. For if $k \leq 7$, it follows from smoothing theory (see e.g. [3]) that N_2 and K admit...
compatible differential structures; if also $2m \geq 3k + 3$, by [2, Theorem 2a] the imbedding of K in N can be approximated by a differentiable imbedding; if finally $2m \geq 3k + 4$ these two imbeddings, being homotopic, are PL-isotopic by a theorem of Hudson [4]. Hence M^m can be regarded as a smooth manifold with K^k as smooth submanifold; as such it has a normal vector bundle and hence a normal PL-microbundle, according to [6, Theorem 3.2].

ADDENDUM TO THEOREM 2. The result also holds if $k \leq 7$, $2m \geq 3k + 4$.

This includes those cases of the theorem which were not covered by our first argument.

REMARK 2. The necessity of suspending ξ in the corollaries to Theorem 1—as also the lack of a uniqueness clause in Theorem 2—all stem from our inability, given a complex K and PL-micro-bundle ξ' over K, to construct a manifold M^r and homotopy equivalence $h: M^r \rightarrow K$, such that $h^*\xi$ is equivalent to the tangent micro-bundle of M. (However large r is, we cannot yet do this.)

Added in proof. Haefliger and the author have now proved a stability theorem for PL-micro-bundles fully analogous to the stability properties of vector bundles, and deduced that Theorem 2 holds for $m \geq 2k$.

REFERENCES

MATHEMATICAL INSTITUTE, OXFORD, ENGLAND