THE EXISTENCE OF COMPLETE CYCLES IN REPEATED LINE-GRAPHS1

BY GARY CHARTRAND

Communicated by V. Klee, March 24, 1965

With every nonempty ordinary graph \(G \) there is associated a graph \(L(G) \), called the line-graph of \(G \), whose points are in one-to-one correspondence with the lines of \(G \) and such that two points are adjacent in \(L(G) \) if and only if the corresponding lines of \(G \) are adjacent. By \(L^2(G) \), we shall mean \(L(L(G)) \); and, in general, \(L^k(G) \) will denote \(L(L^{k-1}(G)) \) for \(k \geq 1 \), where \(L^1(G) \) and \(L^0(G) \) stand for \(L(G) \) and \(G \), respectively. The graphs \(L(G) \), \(L^2(G) \), \(L^3(G) \), etc. are referred to as the repeated line-graphs of \(G \). A complete cycle (or hamiltonian cycle) in a (connected) graph \(G \) is a cycle containing all the points of \(G \). The purpose of this note is to outline a proof of the following result, a complete proof of which will be published elsewhere.

\textbf{Theorem 1.} If \(G \) is a nontrivial connected graph of order \(p \) (having \(p \) points), and if \(G \) is not a path, then \(L^n(G) \) contains a complete cycle for all \(n \geq p - 3 \). Furthermore, the number \(p - 3 \) cannot, in general, be improved.

A graph \(G \) having \(q \) lines, where \(q \geq 3 \), is called sequential if the lines of \(G \) can be ordered as \(x_0, x_1, x_2, \ldots, x_{q-1}, x_q = x_0 \) so that \(x_i \) and \(x_{i+1}, i = 0, 1, \ldots, q - 1 \), are adjacent. The next theorem follows immediately.

\textbf{Theorem 2.} A necessary and sufficient condition that the line-graph \(L(G) \) of a graph \(G \) contain a complete cycle is that \(G \) be a sequential graph.

If a graph \(G \) contains a complete cycle \(C \), then the lines of \(C \) can be arranged in a cyclic fashion. By an appropriate “interspersing” of the lines not on \(C \) (if any) among the lines which are on \(C \), we can produce an ordering of all the lines of \(G \) as needed to show that \(G \) is sequential. This fact coupled with Theorem 2 gives the next result.

\textbf{Theorem 3.} If a graph \(G \) contains a complete cycle, then \(L(G) \) also contains a complete cycle.

\textbf{Corollary.} If a graph \(G \) contains a complete cycle, then \(L^n(G) \) contains a complete cycle for all \(n \geq 1 \).

1 This research is part of a doctoral thesis written under the direction of Professor E. A. Nordhaus of Michigan State University.
The following two lemmas can be quickly established.

Lemma 1. If a graph G has a cycle C with the property that every line of G is incident with at least one point of C, then $L(G)$ contains a complete cycle.

Lemma 2. Let G be a graph consisting of a cycle C and its diagonals (a diagonal of C being a line which is not on C but which is incident with two points of C) and m paths P_1, P_2, \ldots, P_m, where (i) each path has precisely one endpoint in common with C and (ii) for $i \neq j$, P_i and P_j are disjoint except possibly having an endpoint in common if this point is also common to C. Then, if the maximum of the lengths of the P_i is M, $L^n(G)$ contains a complete cycle for all $n \geq M$.

The proof of Theorem 1 is by induction on p with the graphs having order 3, 4, or 5 treated individually. It is assumed then that for all connected graphs G' which are not paths and which have order s, where $s < p$ and $p \geq 6$, $L^n(G')$ contains a complete cycle for each $n \geq s - 3$. The proof involves showing that if G is a graph which is not a path and which has order p, then $L^{p-1}(G)$ is a sequential graph so that $L^{p-1}(G)$ contains a complete cycle (by Theorem 2) and $L^n(G)$ contains a complete cycle for all $n \geq p - 3$ (by the corollary to Theorem 3).

If G is a cycle, the result follows directly, so without losing generality, we assume that G contains a point v having degree 3 or more. Let H denote the connected star subgraph whose lines are all those incident with v, and let Q denote the subgraph whose point set consists of all the points of G different from v and whose lines are all those which are in G but not in H. H and Q have deg v points in common but are line disjoint. We denote the components of Q by G_1, G_2, \ldots, G_k.

$L(H)$ is a complete subgraph of $L(G)$ and so has a cycle containing all the points of $L(H)$. If J_1 denotes $L(H)$ plus all those lines in $L(G)$ incident with one point of $L(H)$, then, by Lemma 1, $H_1 = L(J_1)$ has a cycle containing all the points of H_1. We let J_2 denote $L(H_1)$ plus any lines of $L^2(G)$ incident with a point of $L(H_1)$ and let $H_2 = L(J_2)$. Once again, by Lemma 1, H_2 has a cycle containing all the points of H_2. J_i and H_i, $i = 3, 4, \ldots$, are defined analogously, and each H_i has a cycle containing all the points of H_i.

Two cases are considered: (1) All the G_i are paths or isolated points, and (2) there is at least one G_i different from a path or an isolated point. In the first case, it follows, with the aid of Lemma 2, that $L^{p-4}(G)$ contains a complete cycle so that $L^{p-2}(G)$ contains such a cycle also.
In the second case, we assume that the first \(t \) components, \(1 \leq t \leq k \), of \(G_1, G_2, \ldots, G_k \) are not paths or isolated points. Clearly, each of the components \(G_1, G_2, \ldots, G_t \) has at least 3 points. If \(t < k \), the paths (or isolated points) \(G_{t+1}, \ldots, G_k \) have orders at most \(p-4 \), and it is easily seen that for these components, \(L^{p-4}(G_i) \) does not exist. \(L^{p-4}(G) \) can thus be expressed as the pairwise line disjoint sum of the graphs \(J_{p-4}, L^{p-4}(G_1), L^{p-4}(G_2), \ldots, L^{p-4}(G_t) \), where each of the graphs \(L^{p-4}(G_i), i = 1, 2, \ldots, t \), has a cycle containing all the points of \(L^{p-4}(G_i) \) by the inductive hypothesis.

Since \(p \geq 6 \), it can be shown that for each \(i = 1, 2, \ldots, t \), there is a point \(u_i \) in \(H_{p-4} \) adjacent to both endpoints of a line in \(L^{p-4}(G_i) \). Using this result, we produce a suitable ordering of the lines of \(L^{p-4}(G) \) thereby showing it to be a sequential graph.

Theorem 1 permits us to make the following definition.

Definition. Let \(G \) be a nontrivial connected graph which is different from a path. The **hamiltonian index** of \(G \), denoted by \(h(G) \), is the smallest nonnegative integer \(n \) such that \(L^n(G) \) contains a complete cycle.

It now follows immediately that a graph contains a hamiltonian cycle if and only if its hamiltonian index is zero. Theorem 1 may now be restated in the following way. If \(G \) is a nontrivial connected graph of order \(p \) which is not a path, then \(h(G) \) exists and \(h(G) \leq p - 3 \). To show that the bound given in Theorem 1 cannot be improved, we note that for every \(p \geq 3 \), there are graphs whose hamiltonian indices are \(p - 3 \). The graphs \(G_1 \) and \(G_2 \) shown in Figure 1 have hamiltonian indices equal to \(p - 3 \).

![Figure 1](image-url)