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Introduction. Some important and fundamental theorems in com
plex analysis are simple consequences of theorems in the theory of 
light open mappings for 2-manifolds. This rather complete theory is 
largely the work of G. T. Whyburn [9], [lO], [ l l ] . One theorem 
which includes the well-known theorems of Darboux [4] and Stoïlow 
[8] is the following: 

THEOREM (WHYBURN). Suppose that f is a light open mapping of a 
disk A {topological 2-cell) onto a disk B such that (a) / ( I n t ^4) = I n t B 
and (b) ƒ | Bd A is a homeomorphism of Bd A onto Bd B. Then ƒ is a 
homeomorphism. 

In his paper [12], Whyburn has conjectured that if in the above 
theorem each of A and B is a topological w-cell, then ƒ is a homeomor
phism. This is an extremely difficult problem. One result of this 
announcement provides an affirmative answer for special cases of 
this conjecture. Church and Hemmingsen [ l ] , [2], [3] have made 
significant contributions on related problems. Meisters and Olech [7] 
have some results for very special types of light open mappings; 
namely, either locally 1-1 maps or locally 1-1 maps except on discrete 
sets of a certain type. 

Here, each mapping is continuous and each space is metric. A map
p ing /o f a space X into a space Y is light iSf~"1f(x) is totally discon
nected for each x in X. And, ƒ is open iff for each U open in X, f(U) 
is open relative to f(X). 

Suppose that ƒ is a light mapping of a space X into a space F. We 
shall say tha t the singular set Sf of ƒ is the set of points x in X such 
that ƒ is not locally 1-1 a t x; i.e., there is no set U open in X and con
taining x such that ƒ | U is 1-1. We consider here only mappings ƒ 
which preserve both the boundary and the interior of X (both of which 
are assumed to be nonempty). 

THEOREM 1. Suppose that X is a compact subset of a metric space M, 
B d J ^ O , In t -XV 0, and f is a light open mapping of X into M such 
that (1) f(lntX) = Intf(X), (2) / (Bd X) = B d / ( X ) , (3) the singular 

1 The author carried out research on these and various other related problems at 
the University of Virginia where he held an ONR Research Fellowship, 1962-1963. 
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set S/ has the property that ƒ (5/) does not contain a nonempty set open 
relative to f(X), (4) ƒ(5/) (foes not separate f {X), and (5) /Aere exists a 
nonempty U in X open relative to X such that f \ U is 1-1 and f~lf(U) 
= U. Then ƒ is a homeomorphism. 

This theorem is a generalization of theorems due to Meisters and 
Olech [6]. We use some techniques of theirs and also theorems from 
Whyburn's theory of light open mappings. 

Let P denote the set of all points y in f(X) such that f~l(y) is 
nondegenerate. Now, ƒ is a homeomorphism iff P is empty. We shall 
show that P is empty. 

LEMMA 1. The set P is open relative tof{X) and contains a nonempty 
open set if P is nonempty. 

LEMMA 2. The set A =f(Sf)\JP is closed and therefore compact. 

PROOF. Suppose that y is a limit point of A but y(E.f(X)—A. 
Clearly, y is a limit point of P—f(S/). Now, f~l(y) is a point x and 
ƒ is locally 1-1 at x. Hence, there is a nbhd Nx of x such that ƒ | Nx is 
1-1, f^fiNx) = NX1 and f(Nx) is open relative tof(X). This involves a 
contradiction. 

PROOF OF THEOREM 1. Suppose that P is nonempty. It follows that 
f(Sf) r\ Int f(X) = f(Sf H Int X). Now, f(Sf) = f(Sf H Bd X) 
U/CS/Mnt X). Also, f(X)-f(Sf) = {lf(X)-f(Sf)]^P}KJ{ \f(X) 
-f(Sf)]n\f(X)-P]}. Furthermore, \f(X)-f(Sf)]r\P is open rela
tive to ƒ (X). 

By Lemma 2, f(Sf)VP is closed. Therefore, B =f(X) - [/(5/)UP] 
= \f(X) -f(Sf) ] n \f(X) - P ] is open in f(X). Both B and f(X) -f(Sf) 
are nonempty. Since ƒ(X) — ƒ(5/) is connected, [f(X)— / (5/)]HP = 0 
and, consequently, P = 0. We have a contradiction to our assumption 
that ƒ is not 1-1 and the theorem is proved. 

COROLLARY 1. Suppose that X is a compact proper subset of an n-
manifold Mn with Int X^O. Furthermore, f is a local homeomorphism 
of X into Mn such that (1) f(X) is connected and (2) there is some set U 
in X open relative to X such that /_1/( U) = U and ƒ | U is 1-1. Then f 
is a homeomorphism. 

COROLLARY 2. Suppose that X is a compact subset of En with Int X 
5^0, X = closure of Int X, lntf(X) is connected, and that f is a light 
open mapping of X into En such that (1) / | Int X is locally 1-1, (2) 
/(Int X) = Int f(X), (3) Bd / (Z)=/(Bd X), and (4) there is U open 
relative to X such thatf~lf(U) = U and f\ Uis 1-1. Then f is a homeomor
phism. 
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Light open mappings on n-cells. Now, we are ready to give an 
affirmative answer to some special cases of Whyburn's conjecture. 
Consider the following theorems. 

THEOREM 2. Suppose that ƒ is a light open mapping of an n-cell A 
{unit ball in En) onto an n-cell B (another unit ball) such that 
(1) / - y ( B d A) = Bd A, (2) / (Bd A) = B d B, (3) dimension f(Sf) <n, 
(4) B —f(Sf) is connected, and (5) there is V in B open relative to B 
such thatf\f~l(V) is 1-1. Then f is a homeomorphism. 

Theorem 2 is actually a corollary of Theorem 1. 

THEOREM 3. Suppose that ƒ is a light open mapping of an n-cell A 
(unit ball in En) onto an n-cell B such that (1) /^ / (Bd A)=Bd A> 
(2) / (Bd A) = Bd JB, (3) / | 5/ is 1-1, and (4) for each component C of 
B-f(Sf), there is V in C open relative to B such that f\f~l(V) is 1-1. 
Then f is a homeomorphism. 

PROOF. Clearly ƒ (Int A) = Int B. Since B is locally connected, 
there are at most a countable number of components &, C2, Cs, • • • , 
of B —f(Sf). For each i,/"1(Ct-) is connected. Denote it by 2£t. Further
more, f(Ki) = d. 

Now, / |X« is locally 1-1. Also, f(Ki) = Ci where "D denotes the 
closure^ of D, and/'HC.) = Z t . It follows that / (Bd K{)=Bd f(Kj), 
/ (Int ~Ki) = Int f(Ki), a n d / | ~Ki is a light open mapping of ~Ki onto Ct. 

Apply Corollary 2 where JT* replaces X. Thus, ƒ | 2Tt- is a homeo
morphism. Let 5 = U»Xt. Each point of f(S/) is a limit point of 
B ~ / (5 / ) . Thus, B = Ui Ci. It follows that / (5) = B and that ƒ| S is a 
homeomorphism of S onto 5 . We conclude that S = A and that ƒ is a 
homeomorphism. 

Questions. Suppose that condition (3), namely f\S/ is 1-1, is 
omitted from the hypothesis of Theorem 3. Is the resulting theorem 
true? Condition (3) may be weakened slightly as indicated in Theo
rem 4 below. Suppose that ƒ is a light open mapping of an «-cell A 
onto an «-cell B. Does f(S/) contain an open set? This question has 
remained unsolved for several years (cf. [ l ] , [2], [3]). If condition 
(3) that ƒ(S/) fails to contain an open set is omitted from Theorem 1, 
is the resulting theorem true? 

A generalization of Theorems 1 and 3. In Theorem 1, we require that 
ƒ (Sf) fail to separate ƒ (X) while in Theorem 3, we permit a separation 
but require that ƒ | Sf be 1-1. This may be weakened further. 

THEOREM 4. Suppose that X is a compact subset of a metric space My 

Bd J ^ O , Int JT^O, and ƒ is a light open mapping of X into M such 
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that ( 1 ) / ( I n t X) = I n t / ( X ) , (2 ) / (Bd X)=Bdf(X)f (3) if pEf(Sf) 
where S/ is the singular set of f, then p is in the boundary of some com
ponent of f(X)=f(Sf), (4) if C is a component of f(X)—f(Sf), then 
flf-^Cr^fiS/)] is 1-1, and (5) for each component K of f(X)-f(Sf), 
there is VinK open relative tof(X) such that f\f~l{V) is 1-1. Then f is a 
homeomorphism. 

A proof of Theorem 4 may be obtained in a manner similar to that 
for Theorem 3. 
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