The following problem was proposed by J. E. Littlewood about 15 years ago: Let \(S(x) = \sum_{n=-\infty}^{\infty} c_n e^{inz} \) be a trigonometric series having the property that all its partial sums are positive. Is such a series necessarily a Fourier series? The purpose of this note is to show that such is not the case. It is well known that such a series must be a Fourier-Stieltjes series, and, as was shown by H. Helson, even the weaker condition

\[
(1) \quad \int |S_n(x)| \, dx < \text{const.}, \quad \left(S_n(x) = \sum_{-n}^{n} c_n e^{inz} \right)
\]

implies \(c_n = o(1) \) (cf. Zygmund [2, p. 286]). It has been shown by Mary Weiss [1] that condition (1) does not imply that \(S(x) \) is a Fourier series.

Lemma 1. There exists a constant \(\alpha > 0 \) such that for every \(\epsilon > 0 \) there exists a real valued trigonometric polynomial \(P_{\epsilon}(x) \), with vanishing constant coefficient, having the properties:

(i) \(|\hat{P}(j)| < \epsilon \),

(ii) \(P_{\epsilon}(x) > \alpha \) on a set of measure \(> \alpha \),

(iii) The absolute values of the partial sums of \(P_{\epsilon}(x) \) are less than \(1/2 \).

Proof. There exists a constant \(C \) such that \(|(1/\sqrt{N}) \sum_{n=1}^{N} e^{in \log n} e^{inz}| < C \) (cf. Zygmund [2, p. 199]). Take \(N > \epsilon^{-2} \) and \(P_{\epsilon}(x) = \text{Re}((1/2\sqrt{N}) \sum_{n=1}^{N} e^{in \log n} e^{inz}) \). Properties (i) and (iii) are obvious. Property (ii) follows from the fact that

\[
\|P_{\epsilon}\|_{L^2} = \frac{1}{2\sqrt{2C}}, \quad \sup |P_{\epsilon}(x)| \leq \frac{1}{2}.
\]

We shall also need the following lemma:

Lemma 2. Let \(f_j(x) \) be real valued trigonometric polynomials satisfying:

(a) \(f_j(0) = 0 \),

(b) \(f_j(x) > \epsilon \) on a set of measure \(> \alpha \),

(c) \(|f_j(x)| < 1/2 \).

Then, if \(\lambda_j \to \infty \) fast enough, the product

718
\[\prod_{1}^{\infty} (1 - f_{j}(\lambda_{j}x)) \]

converges weakly to a singular measure.

Proof. Our first condition on the growth of \(\lambda_{n} \) is:

\[\lambda_{n} > 3 \text{ times the degree of } \prod_{1}^{n-1} (1 - f_{j}(\lambda_{j}x)) \]

which implies that the constant term of \(\prod_{1}^{n} (1 - f_{j}(\lambda_{j}x)) \) is 1 for all \(n \). Since the partial products are positive, this implies that the (formal) product (2) is a Fourier-Stieltjes series of a positive measure \(\mu \). All that we have to do now is follow the lines of the proof of Theorem V.7.6, p. 209 in Zygmund [2]: We notice first that the partial products \(\prod_{1}^{n} (1 - f_{j}(\lambda_{j}x)) \) are partial sums of \(S(d\mu) \) followed by long gaps. As is well known, this implies \(\prod_{1}^{n} (1 - f_{j}(\lambda_{j}x)) \rightarrow \phi(x) \) a.e. where \(\phi(x)dx \) is the absolutely continuous part of \(\mu \); but if \(\lambda_{n} \) grows fast enough (b) implies that the only limit \(\prod_{1}^{n} (1 - f_{j}(\lambda_{j}x)) \) can converge to a.e. is zero.

The Example. We take

\[S(x) = \prod_{1}^{n} (1 - P_{e_{j}}(\lambda_{j}x)). \]

The \(P_{e_{j}} \) are the polynomials defined in Lemma 1, with

\[0 < e_{j} < 2^{-j-2} \left\| \prod_{1}^{j-1} (1 - P_{e_{k}}(\lambda_{k}x)) \right\|^{-1} \]

(where \(\|g\|_{A} = \sum|g(n)| \) and \(\lambda_{j} \rightarrow \infty \) rapidly enough so that

(a) \(\lambda_{j} > 3 \text{ times the degree of } \prod_{1}^{j-1} (1 - P_{e_{k}}(\lambda_{k}x)) \) and

(b) \(S(x) \) is the Fourier-Stieltjes series of a singular measure

(Lemma 2).

From (a) above it follows that a partial sum of \(S(x) \) has necessarily the form \(\prod_{1}^{q} (1 - P_{e_{j}}(\lambda_{j}x)) \) times a partial sum of \((1 - P_{e_{q+1}}(\lambda_{q+1}x)) \) plus two groups of terms each having the form

\[P_{e_{q+1}}(k)e^{ikx} \text{ times some terms from } \prod_{1}^{q} (1 - P_{e_{j}}(\lambda_{j}x)). \]

By (iii) \(\prod_{1}^{q} (1 - P_{e_{j}}(\lambda_{j}x)) > 2^{-q} \) and the partial sums of \((1 - P_{e_{q+1}}(\lambda_{q+1}x)) \) are >1/2 and by (4) the sum of the remaining terms is bounded by \(2^{-q-2} \), hence the partial sums of \(S(x) \) are positive.

References