SOLVABILITY OF THE FIRST COUSIN PROBLEM AND VANISHING OF HIGHER COHOMOLOGY GROUPS FOR DOMAINS WHICH ARE NOT DOMAINS OF HOLOMORPHY

BY AVNER FRIEDMAN

Communicated by F. Browder, June 7, 1965

This work is a sequel to [1]: In [1] we considered the vanishing of the first cohomology groups with coefficients in \(0, 0^*\) for sets \(X\setminus A\) whereas in the present work we consider the same question for higher cohomology; at the same time we obtain some additional results for the first Cousin problem. As in [1] we take \(n \geq 3\).

Scheja [3] proved that if \(X\) is an open set in \(C^n\) and \(A\) is an analytic closed subset of \(X\) of dimension \(\leq n-q-2\), then the natural homomorphism

\[
H^q(X, 0) \rightarrow H^q(X\setminus A, 0)
\]

is bijective. We shall prove:

Theorem 1. Let \(A\) be a closed bounded generalized polydisc in an open set \(X\) of \(C^n\). Then the natural homomorphism (1) is bijective for any \(1 \leq q \leq n-2\).

Proof. Set \(A = L_1 \times \cdots \times L_n\) and let \(K = K_1 \times \cdots \times K_n\) be an open generalized polydisc with \(A \subset K \subset \overline{K} \subset X\). Set \(L' = L_2 \times \cdots \times L_n,\ K' = K_2 \times \cdots \times K_n,\ G_0 = (K_1 \setminus L_1) \times K',\ G_1 = K_1 \times (K' \setminus L')\), \(G = G_0 \cup G_1\). By a straightforward generalization of [3, Hilfsatz] one gets \(H^q(G, 0) = 0\). We now introduce a covering \(U = \{ U_i \}\) of \(X\setminus A\) where all the \(U_i\) are domains with \(H^q(U_i, 0) = 0\) and precisely \(q+1\) of them, say \(U_{i_0}, \cdots, U_{i_q}\), coincide with \(G\). By Leray’s theorem [2], the canonical homomorphism

\[
H^q(N(U), 0) \rightarrow H^q(X\setminus A, 0)
\]

(where \(N(U)\) is the nerve of \(U\)) is bijective.

We next introduce a covering \(U' = \{ U'_i \}\) of \(X\) where \(U'_{i_0} = \cdots = U'_{i_q} = K_1 \times K'\) and \(U'_i = U_i\) for all other indices \(i\). Again, the canonical map

\[
H^q(N(U'), 0) \rightarrow H^q(X, 0)
\]

is bijective.

1 This work was partially supported by the Alfred P. Sloan Foundation and by the NASA Grant NGR 14-007-021.
SOLVABILITY OF THE FIRST COUSIN PROBLEM

743

is bijective. We shall now construct a map

\[(4) \quad H^q(N(U), \emptyset) \rightarrow H^q(N(U'), \emptyset).\]

Let \(f \in H^q(N(U), \emptyset)\). We may view it as a \(q\)-cocycle. Let \(f_{i_0}, \ldots, f_{i_q}\) be the section of \(f\) on \(U_{i_0} \cap \cdots \cap U_{i_q} = G\). The proof of Lemma 3 in [1] can be extended to show that \(f_{i_0}, \ldots, f_{i_q}\) can be continued analytically to \(K_1 \times K'\). The continued function \(f'_{i_0}, \ldots, f'_{i_q}\) thus obtained is defined on \(U'_{i_0} \cap \cdots \cap U'_{i_q}\). We now define \(f'_{i_0}, \ldots, f'_{i_q}\) for any set of distinct indices \(\{j_0, \ldots, j_q\}\) which does not coincide with the set \(\{i_0, \ldots, i_q\}\).

Since among the \(j_k\)'s there is at least one index, say \(i\), with \(i \neq i_k\) for all \(0 \leq k \leq q\), and, consequently, \(U'_i = U_i \subset X \setminus A\), we have \(U'_i \cap (K_1 \times K') = U'_i \cap G\). Hence \(U'_{j_0} \cap \cdots \cap U'_{j_q} = U_{j_0} \cap \cdots \cap U_{j_q}\), and we can take \(f'_{j_0}, \ldots, f'_{j_q} = f_{j_0}, \ldots, f_{j_q}\).

We have thus defined a \(q\)-cochain \(f'\) on \(N(U')\). \(f'\) is cocycle. Indeed, observing that \(U'_{i_0} \cap \cdots \cap U'_{i_q+1}\) coincides with \(U_{j_0} \cap \cdots \cap U_{j_q+1}\) if all the \(j_k\) are distinct from each other, and that the analytic function \(f'_{i_0}, \ldots, f'_{i_q}\) restricted to either of these sets coincides with \(f_{j_0}, \ldots, f_{j_q}\), the equation \(\delta f' = 0\) implies \(\delta f = 0\).

We next show that if \(f = \delta g\) then there is a \((q-1)\)-chain \(g'\) with \(\delta g' = f'\). If (a) \(\{j_0, \ldots, j_{q-1}\} \subset \{i_0, \ldots, i_q\}\) then we take \(g'_{i_0}, \ldots, g'_{i_{q-1}}\) to be the analytic continuation of \(g_{i_0}, \ldots, g_{i_{q-1}}\) to \(U'_{i_0} \cap \cdots \cap U'_{i_{q-1}}\), whereas if (a) does not hold then \(U'_{j_0} \cap \cdots \cap U'_{j_{q-1}} = U_{j_0} \cap \cdots \cap U_{j_{q-1}}\) and we take \(g'_{j_0}, \ldots, g'_{j_{q-1}} = g_{j_0}, \ldots, g_{j_{q-1}}\). With \(g'\) thus constructed, the relation \(\delta g' = f'\) over \(U'_{j_0} \cap \cdots \cap U_{j_{q-1}}\) in case (b) \(\{j_0, \ldots, j_q\} = \{i_0, \ldots, i_q\}\) follows from the relation \(\delta g = f\) over \(U_{j_0} \cap \cdots \cap U_{j_q}\) by analytic continuation, whereas in case (b) does not hold it coincides with the relation \(\delta g = f\) over \(U_{j_0} \cap \cdots \cap U_{j_q}\).

We have thus shown that the map \(f \rightarrow f'\) defines a homomorphism (4). This map is surjective since, given \(f'\), its restriction \(f\) to \(N(U)\) is mapped into \(f'\) by the above map. It is also injective since if \(f' = \delta g'\) for some \((q-1)\)-cochain \(g'\) over \(N(U')\), then the restriction \(g\) of \(g'\) to \(N(U)\) clearly satisfies \(f = \delta g\). Noting finally that the map \(f \rightarrow f'\) is the inverse of the restriction map, and combining (2)-(4), (1) follows.

COROLLARY. If \(H^q(X, \emptyset) = 0\) then \(H^q(X \setminus A, \emptyset) = 0\). In particular, if \(X\) is Cousin I then \(X \setminus A\) is Cousin I.

THEOREM 2. Let \(A, B\) be two closed bounded subsets of an open set \(X \subset \mathbb{C}^n\) and let \(P\) be a closed generalized polydisc with \(A \subset \text{int } P \subset P \subset \text{int } B\). If, for some \(1 \leq q \leq n-2\), the natural homomorphism

\[(5) \quad H^q(X \setminus A, \emptyset) \rightarrow H^q(X \setminus B, \emptyset)\]

is injection, then there exists a homomorphism \(\lambda: H^q(X \setminus A, \emptyset) \rightarrow H^q(X, \emptyset)\)
such that πλ = identity, where π is the map (1) (and, consequently, π is surjective); in particular, if $H^q(X, \theta) = 0$ then $H^q(X \setminus A, \theta) = 0$.

Proof. Take coverings U^1, U^2, U^3, U^4 of $X, X \setminus A, X \setminus P, X \setminus B$ respectively whose open sets are domains of holomorphy and such that the sets of U^i ($i = 2, 3, 4$) are among the sets of U^{i-1}. Given $f_2 \in H^q(N(U^3), \theta)$ there corresponds to it (by restriction) a unique element f_4 in $H^q(N(U^4), \theta)$ and a unique element f_3 in $H^q(N(U^3), \theta)$; f_4 is the restriction of f_3. By Theorem 1 there exists an $f_1 \in H^q(N(U^1), \theta)$ whose restriction to $N(U^3)$ is f_2. Hence the restriction of f_1 to $N(U^4)$ is f_4. Since f_1 and f_2 have the same restriction on $N(U^4)$, the injectivity of (5) implies that the restriction of f_1 to $N(U^3)$ is f_2. Thus the map $f_2 \mapsto f_1$ is an inverse of the restriction map $H^q(N(U^1), \theta) \rightarrow H^q(N(U^3), \theta)$. The assertion of the theorem now follows with X being the image of the homomorphism $f_2 \mapsto f_1$ under the canonical map corresponding to $H^q(N(U^3), \theta) \rightarrow H^q(X \setminus A, \theta), H^q(N(U^1), \theta) \rightarrow H^q(X, \theta)$.

Generalizations. By successive applications of Theorem 1 we get:

1. If A_1, \ldots, A_m are closed bounded generalized polydiscs such that $A_j \cap A_k = \emptyset$ if $j \neq k$, then the natural map $H^q(X, \theta) \rightarrow H^q \left(X \setminus \left(\bigcup_{i=1}^m A_i \right), \theta \right)$ is bijective.

2. (2) Theorem 1 extends to the case where X is an open set on a complex manifold provided A is contained in one coordinate patch and its image in C^n is a generalized polydisc. Theorem 2 and (1) have similar extensions.

By slightly modifying the proof of Theorem 1 we obtain:

3. If $X = X_1 \times K_{p+1} \times \cdots \times K_2, A = A_1 \times K_{p+1} \times \cdots \times K_n$ where X_1 is any open set of C^n and K_j is an open set in the z_j-plane, then the homomorphism (1) is bijective if $1 \leq q \leq p - 2$.

4. If A in Theorem 1 is convex, then (see [1]) $H^q(G, \theta^*) = 0$. By modifying the proof of Theorem 1 we find that the natural homomorphism $H^q(X, \theta^*) \rightarrow H^q(X \setminus A, \theta^*)$ is bijective. The analogs of Theorem 2 and (1)–(3) are also valid.

We shall now give a different approach to proving results similar to Theorem 1. Since this approach does not yield a result as general as Theorem 1, we shall only sketch it. Let $X = K_1 \times \cdots \times K_n, A = L_1 \times \cdots \times L_n$ be generalized polydiscs. We say that the condition (A_m) holds if for each $j = 1, \ldots, m$ either (a) K_1 is the whole
plane C and then L_j is an arbitrary closed bounded subset of K_j, or (b) $K_j = C$ and then L_j consists of a finite number of points. The L_j for $j = m+1, \ldots, n$ are arbitrary closed subsets of K_j.

Theorem 3. If (A_m) holds for some $2 \leq m \leq n$ then $H^q(X \setminus A, \partial) = 0$ for $1 \leq q \leq \min(m - 1, n - 2)$. The relations $H^{n-1}(X \setminus A, \partial) \neq 0$, $H^q(X \setminus A, \partial) = 0$ for $q \geq n$ are valid under the assumption (A_0).

Proof. Setting $\Delta_j = K_1 \times \cdots \times K_{j-1} \times (K_j \setminus L_j) \times K_{j+1} \times \cdots \times K_n$ and noting that $H^q(\Delta_j, \partial) = 0$ for $q \geq 1$, it suffices to consider $H^q(U, \partial)$, where $U = \{\Delta_1, \ldots, \Delta_n\}$. We consider only the case $1 \leq q \leq n - 2$. Denote by $I_{i_1, \ldots, i_h}(h)$ the Cauchy integral of h with the ith contour being ∂K_i if $i \neq j$ for all p, and ∂L_i if $i = j_p$ for some p. (Actually one should replace $\partial K_m, \partial L_m$ by smooth $\partial K_m, \partial L_m$ which approximate $\partial K_m, \partial L_m$.) Then we can represent each component f_{i_0, \ldots, i_q} of a q-cochain f by

$$f_{i_0, \ldots, i_q} = \sum_{h=0}^{q+1} \sum_{i_1, \ldots, i_h} I_{i_1, \ldots, i_h}(f_{i_0, \ldots, i_q}).$$

Lemma 1. Consider a domain $D = K \setminus L$ in the complex plane, where K is the whole plane and L is any closed bounded set with C^1 boundary ∂L. Let $\phi(z)$ be any analytic function in D and let $\psi(z)$ be any continuous function on ∂L such that

$$\int_{|t| = R} \frac{\phi(t)}{t - z} \, dt + \int_{\partial L} \frac{\psi(t)}{t - z} \, dt = 0 \text{ in } D \cap \{z; |z| < R\}$$

for all R sufficiently large. Then, for all R sufficiently large,

$$\int_{|t| = R} \frac{\phi(t)}{t - z} \, dt = \int_{\partial L} \frac{\psi(t)}{t - z} \, dt = 0 \text{ in } D \cap \{z; |z| < R\}.$$

A similar result holds in case K is a bounded set with C^1 boundary and L consists of a finite number of points. Using these results, the condition $\delta f = 0$ implies the following system of equations:

If $i_0 < \cdots < i_h \leq m < i_{h+1} < \cdots < i_{q+1}$ for some $0 \leq h \leq q + 1$, and if $i_{j_1} < \cdots < i_{j_k} \leq m$ for some $0 \leq k \leq h$, then

$$f_{i_0, \ldots, i_q} = \sum_{\alpha_1, \ldots, \alpha_p} \left(\sum_{\nu=0}^{q+1} (-1)^\nu I_{i_1, \ldots, i_h, \alpha_1, \ldots, \alpha_p} \prod_{\nu=0}^{q+1} \right) = 0,$$

where in the third summation $\nu \neq j_1, \ldots, \nu \neq j_k$ and $\nu \neq \lambda_1, \ldots, \nu \neq \lambda_p$.

To find g satisfying $\delta g = f$, we try to represent $g_{i_0, \ldots, i_{q-1}}$ analogously to (6), and then the relation $\delta g = f$ is a consequence of the following system of equations:
If \(i_0 < \cdots < i_{h-1} \leq m < i_h < \cdots < i_q \) for some \(0 \leq h - 1 \leq q \), and if \(i_{j_1} < \cdots < i_{j_k} \leq m \) for some \(0 \leq k \leq h - 1 \), then

\[
\sum_{p=0}^{q-h+1} \sum_{h_1 < \cdots < h_p} I_{i_{j_1}} \cdots \cdots I_{i_{j_k}} \cdots \cdots I_{i_q} \left(\sum_{r=0}^{q} (-1)^r g_{i_0} \cdots \cdots g_{i_q} \right) = 0,
\]

where in the third summation of the first term \(\nu \neq j_1, \cdots, \nu \neq j_k \) and \(\nu \neq \lambda_1, \cdots, \nu = \lambda_p \).

Using (7) we can solve (8) as follows: If \(i_0 > 1 \), or if \(i_0 = 1, i_{j_1} > 1 \) then \(g_{i_0} \cdots \cdots g_{i_{q-1}} = f_{i_0} \cdots \cdots f_{i_{q-1}} \). If \(i_0 = i_{j_1} = 1 \) and if \(i_1 > 2 \) or \(i_1 = 2, i_{j_2} > 2 \) then \(g_{i_0} \cdots \cdots g_{i_{q-1}} = f_{i_0} \cdots \cdots f_{i_{q-1}} \). We proceed in this manner and finally define, in case \(i_0 = i_{j_1} = 1, \cdots, i_{k-1} = i_{j_k} = k, g_{i_0} \cdots \cdots g_{i_{q-1}} = f_{i_{k+1}, i_0} \cdots \cdots i_{q-1} \).

This method extends also to the situations described in (1), (3) above.

Added in proof. The relation \(H^{\nu-2}(X \setminus A, \emptyset) \neq 0 \) holds if in (3) \(X_1 \) and \(A_1 \) are both generalized polydiscs. Taking \(\Omega_m = X_m \setminus A_m \) where \(X_m, A_m \) are generalized polydiscs with \(X_m \not\subseteq X, A \not\subseteq A \) one derives, for fixed \(1 \leq q \leq n - 2 \), examples of domains \(\Omega_m \) with \(\Omega_{m-1} \cap \Omega_m \), such that \(H^r(\Omega, \emptyset) = 0 \) for \(1 \leq r \leq n - 2 \) but \(H^r(\Omega_m, \emptyset) \neq 0 \) where \(\Omega = \text{int} (\lim \Omega_m) \).

By Dolbeault’s theorem, \(H^r(\Omega, \emptyset) = 0 \) if and only if for any \(C^\infty(\Omega) \) form \(f \) of bidegree \((0, q)\) with \(\bar{\partial} f = 0 \) there is a \(C^\infty(\Omega) \) form \(u \) with \(\bar{\partial} u = f \). By modifying the proof in [2, p. 29] we find: If for some \(q > 1, \Omega_m \subset \Omega = \lim \Omega_m, H^r(\Omega_m, \emptyset) = 0 \) for \(r = q - 1, q \), then \(H^q(\Omega_m, \emptyset) = 0 \). Also if \(H^1(\Omega_m, \emptyset) = 0 \) and if for any \(u \) holomorphic in \(\Omega_m \) and \(\epsilon > 0 \) there is a \(v \) holomorphic in \(\Omega_{m+1} \) with \(|u - v| < \epsilon \) in \(\Omega_{m-1} \), then \(H^1(\Omega, \emptyset) = 0 \); this can be applied to \(\Omega_m = X_m \setminus A_m \) as in [1, Theorem 3].

References

Northwestern University