RADON-FOURIER TRANSFORMS ON SYMMETRIC SPACES AND RELATED GROUP REPRESENTATIONS

BY S. HELGASON

Communicated by G. D. Mostow, May 7, 1965

In §2 we announce some results in continuation of [10], connected with the Radon transform. §1 deals with tools which also apply to more general questions and §§2–3 contain some applications to group representations. A more detailed exposition of §2 appears in Proceedings of the U. S.-Japan Seminar in Differential Geometry, Kyoto, June, 1965.

1. Radial components of differential operators. Let \(V \) be a manifold, \(v \) a point in \(V \) and \(V_v \) the tangent space to \(V \) at \(v \). Let \(G \) be a Lie transformation group of \(V \). A \(C^\infty \) function \(f \) on an open subset of \(V \) is called locally invariant if \(Xf = 0 \) for each vector field \(X \) on \(V \) induced by the action of \(G \).

Suppose now \(W \) is a submanifold of \(V \) satisfying the following transversality condition:

\[(T) \quad \text{For each } w \in W, V_w = W_w + (G \cdot w)_w \quad (\text{direct sum}).\]

If \(f \) is a function on a subset of \(V \) its restriction to \(W \) will be denoted \(f|_W \).

Lemma 1.1. Let \(D \) be a differential operator on \(V \). Then there exists a unique differential operator \(\Delta(D) \) on \(W \) such that

\[(Df)|_W = \Delta(D)f|_W \]

for each locally invariant \(f \).

The operator \(\Delta(D) \) is called the radial component of \(D \). Many special cases have been considered (see e.g. [1, §2], [4, §5], [5, §3], [7, §7], [8, Chapter IV, §§3–5]).

Suppose now \(dw \) (resp. \(dw \)) is a positive measure on \(V \) (resp. \(W \)) which on any coordinate neighborhood is a nonzero multiple of the Lebesgue measure. Assume \(dg \) is a bi-invariant Haar measure on \(G \).

Given \(u \in C_c^\infty(G \times W) \) there exists [7, Theorem 1] a unique \(f_u \in C_c^\infty(G \cdot W) \) such that

\[\int_{G \times W} F(g \cdot w) u(g, w) \, dg \, dw = \int_V F(v) f_u(v) \, dv \quad (F \in C_c^\infty(G \cdot W)). \]

Let \(\phi_u \in C_c^\infty(W) \) denote the function \(w \mapsto f_u(g, w) \) \(dg \).

1 Work supported in part by the National Science Foundation, NSF GP-2600.

757
Theorem 1.2. Suppose G leaves dv invariant. Let T be a G-invariant distribution on $G \cdot W$. Then there exists a unique distribution \bar{T} on W such that

$$\bar{T}(\phi_u) = T(f_u), \quad u \in C_0^\infty(G \times W).$$

If D is a G-invariant differential operator on V then

$$(DT)^{-} = \Delta(D)\bar{T}.$$

The proof is partly suggested by the special case considered in [7, §9]. See also [12, §4].

2. The Radon transform and conical distributions. Let G be a connected semisimple Lie group, assumed imbedded in its simply connected complexification. Let K be a maximal compact subgroup of G and X the symmetric space G/K. Let $G = KAN$ be an Iwasawa decomposition of G (A abelian, N nilpotent) and let M and M', respectively, denote the centralizer and normalizer of A in K. The space Ξ of all horocycles ξ in X can be identified with G/MN [10, §3]. Let $D(X)$ and $D(\Xi)$ denote the algebras of G-invariant differential operators on X and Ξ, respectively; let $S(A)$ denote the symmetric algebra over the vector space A and $I(A)$ the set of elements in $S(A)$ which are invariant under the Weyl group $W = M'/M$. There are isomorphisms Γ of $D(X)$ onto $I(A)$ [6, p. 260], [9, p. 432] and Γ of $D(\Xi)$ onto $S(A)$ [10, p. 676].

The Radon transform $f \mapsto f^\phi$ ($f \in C_c^\infty(X)$) and its dual $\phi \mapsto \phi^x$ ($\phi \in C^\infty(\Xi)$) are defined by

$$f^\phi(\xi) = \int_\xi f(x) dm(x), \quad \phi^x(\xi) = \int_\xi \phi(\xi) d\mu(\xi) \quad (x \in X, \xi \in \Xi)$$

where dm is the measure on ξ induced by the canonical Riemannian structure of X, \bar{x} is the set of horocycles passing through x and $d\mu$ is the measure on \bar{x} invariant under the isotropy subgroup of G at x, satisfying $\mu(\bar{x}) = 1$. The easily proved relation

$$\int_X f(x)\phi^x(dx = \int_\Xi f(\xi)\phi(\xi)d\xi \quad (f \in C^\infty_c(X), \phi \in C^\infty(\Xi))$$

$d\xi$ and $d\xi$ being G-invariant measures on X and Ξ, respectively, suggests immediately how to extend the integral transforms above to distributions.

Let \mathfrak{g} and \mathfrak{a} be the Lie algebras of G and A, respectively, and \mathfrak{a}^*
the dual space of \(\mathfrak{A} \). Let \(\lambda \mapsto c(\lambda) \) be the function on \(\mathfrak{A}^\ast \) giving the Plancherel measure \(|c(\lambda)|^{-2}d\lambda \) for the \(K \)-invariant functions on \(X \) (Harish-Chandra [6, p. 612]). Let \(j \) be the operator on rapidly decreasing functions on \(A \) which under the Fourier transform on \(A \) corresponds to multiplication by \(c^{-1} \). Let \(\rho \) denote the sum (with multiplicity) of the restricted roots on \(\mathfrak{A} \) which are positive in the ordering given by \(N \). Let \(\varphi \) denote the function on \(\mathfrak{Z} \) defined by

\[
e^{\varphi(kaMN)} = \exp[\rho(\log a)] \quad (k \in K, a \in A).
\]

Viewing \(\mathfrak{Z} \) as a fibre bundle with base \(K/M \), fibre \(A \) [10, p. 675] we define the operator \(\Lambda \) on suitable functions \(\phi \) on \(\mathfrak{Z} \) by

\[
\Lambda \phi = \int (\phi \circ j)(\varphi) |F|
\]

where \(|F| \) denotes restriction to any fibre \(F \). Similarly, the complex conjugate of \(c^{-1} \) determines an operator \(\Lambda^\ast \). By means of the Plancherel formula mentioned one proves (cf. [11, §6]).

Theorem 2.1. There exist constants \(c, c' > 0 \) such that

\[
\int_X |f(x)|^2dx = c' \int_\mathfrak{Z} |\Lambda f(\xi)|^2d\xi,
\]

\[
f = c(\Lambda \Lambda^\ast)^{-1}
\]

for all \(f \in C_0^\infty(X) \).

If all Cartan subgroups of \(G \) are conjugate, the operators \(j \) and \(\Lambda \) are differential operators (\(c^{-1} \) is a polynomial). Considering \(jj \) is an element in \(I(A) \) we put \(\Box = \Gamma^{-1}(jj) \in D(X) \). Then (3) can be written in the form

\[
f = c \Box ((\Lambda \Lambda^\ast)^{-1}), \quad f \in C_0^\infty(X),
\]

which is more convenient for applications [10, §7]. For the case when \(G \) is complex a formula closely related to (3) was given by Gelfand-Graev [2, §5.5].

Let \(x_0 \) and \(\xi_0 \) denote the origins in \(X \) and \(\mathfrak{Z} \), respectively. The space \(B = K/M \) can be viewed as the set of Weyl chambers emanating from \(x_0 \) in \(X \). If \(\xi = ka \cdot \xi_0 \) \((k \in K, a \in A)\) we say that the Weyl chamber \(kM \) is normal to \(\xi \) and that \(a \) is the complex distance from \(x_0 \) to \(\xi \). If \(x \in X, b \in B \) let \(\xi(x, b) \) be the horocycle with normal \(b \) passing through \(x \), and let \(A(x, b) \) denote the complex distance from \(x_0 \) to \(\xi(x, b) \).

Theorem 2.2. For \(f \in C_0^\infty(X) \) define the Fourier transform \(\hat{f} \) by

\[
\hat{f}(\lambda, b) = \int_X f(x) \exp[-i\lambda + \rho(A(x, b))]dx \quad (\lambda \in \mathfrak{A}^\ast, b \in B).
\]

Then
\[
\int_X |f(x)|^2 \, dx = \int_{\mathbb{R}^* \times B} |f(\lambda, b)|^2 \, c(\lambda) \, d\lambda \, db,
\]
where \(db \) is a suitably normalized \(K \)-invariant measure on \(B \).

Remarks. (i) In view of the analogy between horocycles in \(X \) and hyperplanes in \(\mathbb{R}^n \), formula (4) corresponds exactly to the Fourier inversion formula in \(\mathbb{R}^n \) when written in polar coordinate form.

(ii) If \(f \) is a \(K \)-invariant function on \(X \), Theorem 2.2 reduces to Harish-Chandra’s Plancherel formula [6, p. 612]. Nevertheless, Theorem 2.2 can be derived from Harish-Chandra’s formula.

(iii) A “plane wave” on \(X \) is by definition a function on \(X \) which is constant on each member of a family of parallel horocycles. Writing (4) in the form

\[
\int_B f_b(x) \, db
\]

we get a continuous decomposition of \(f \) into plane waves. On the other hand, if we write (4) in the form

\[
f(x) = \int_{\mathbb{R}^*} f_\lambda(x) \, c(\lambda) \, d\lambda
\]

we obtain a decomposition of \(f \) into simultaneous eigenfunctions of all \(D \in D(X) \).

We now define for \(\mathcal{E} \) the analogs of the spherical functions on \(X \).

Definition. A distribution (resp. \(C^\infty \) function) on \(\mathcal{E} = G/MN \) is called **conical** if it is (1) \(MN \)-invariant; (2) eigendistribution (resp. eigenfunction) of each \(\mathcal{D} \).

Let \(\xi_0 = MN \), \(\xi^* = m^*MN \), where \(m^* \) is any element in \(M' \) such that the automorphism \(a \to m^*am^{*-1} \) of \(A \) maps \(\rho \) into \(-\rho \). By the Bruhat lemma, \(\mathcal{E} \) will consist of finitely many \(MNA \)-orbits; exactly one, namely \(\mathcal{E}^* = MNA \cdot \xi^* \), has maximum dimension and given \(\xi \in \mathcal{E}^* \) there exists a unique element \(a(\xi) \in A \) such that \(\xi \in MNa(\xi) \cdot \xi^* \) [10, p. 673]. Using Theorem 1.2 we find:

Theorem 2.3. Let \(T \) be a conical distribution on \(\mathcal{E} \). Then there exists \(a\psi \in C^\infty(\mathcal{E}^*) \) such that \(T = \psi \) on \(\mathcal{E}^* \) and a linear function \(\mu \): \(\mathbb{R} \to \mathbb{C} \) such that

\[
\psi(\xi) = \psi(\xi^*) \exp[\mu(\log a(\xi))] \quad (\xi \in \mathcal{E}^*).
\]
In general ψ is singular on the lower-dimensional MNA-orbits. However, we have:

Theorem 2.4. Let $\mu : A \to C$ be a linear function and let $\psi \in C^\infty(\mathcal{S}^*)$ be defined by (5). Then ψ is locally integrable on \mathcal{S} if and only if

\begin{equation}
\text{Re} \langle \alpha, \mu + \rho \rangle > 0 \quad (\text{Re} = \text{real part})
\end{equation}

for each restricted root $\alpha > 0$; here \langle , \rangle denotes the inner product on A^* induced by the Killing form of \mathfrak{g}. If (6) is satisfied then ψ, as a distribution on \mathcal{S}, is a conical distribution.

Theorem 2.5. The conical functions on \mathcal{S} are precisely the functions ψ given by (5) where for each restricted root $\alpha > 0$,

\begin{equation}
\frac{\langle \mu, \alpha \rangle}{\langle \alpha, \alpha \rangle} \text{ is an integer } \geq 0.
\end{equation}

Definition. A representation π of G on a vector space E will be called (1) spherical if there exists a nonzero vector in E fixed by $\pi(K)$; (2) conical if there exists a nonzero vector in E fixed by $\pi(MN)$.

The correspondence between spherical functions on X and spherical representations is well known. In order to describe the analogous situation for \mathcal{S}, for an arbitrary function ϕ on \mathcal{S}, let E_ϕ denote the vector space spanned by the G-translates of ϕ and let π_ϕ denote the natural representation of G on E_ϕ.

Theorem 2.6. The mapping $\psi \mapsto \pi_\psi$ maps the set of conical functions on \mathcal{S} onto the set of finite-dimensional, irreducible conical representations of G. The mapping is one-to-one if we identify proportional conical functions and identify equivalent representations. Also

\[\psi(g \cdot \xi_0) = (\pi_\psi(g^{-1})e, e'), \]

where e and e', respectively, are contained in the highest weight spaces of π_ψ and of its contragredient representation. Finally, μ in (5) is the highest weight of π_ψ.

Corollary 2.7. Let π be a finite-dimensional irreducible representation of G. Then π is spherical if and only if it is conical.

The highest weights of these representations are therefore characterized by (7). Compare Sugiura [13], where the highest weights of the spherical representations are determined.

3. **The case of a complex G.** If G is complex, M is a torus and some of the results of §2 can be improved. Let \mathfrak{H} be a Cartan subalgebra
of \mathfrak{G} containing \mathfrak{A} and H the corresponding analytic subgroup of G. Now we assume G simply connected.

Let $D(G/N)$ denote the algebra of all G-invariant differential operators on G/N. Let $v_0, v^* \in G/N$ be constructed similarly as ξ_N and ξ^* in §2. Then §1 applies to the submanifold $W = H \cdot v^*$ of $V = NH \cdot v^*$ and for each differential operator D on G/N, $\Delta(D)$ is defined and can be viewed as a differential operator on H.

Theorem 3.1. The mapping $\Delta(D)$ is an isomorphism of $D(G/N)$ onto the (real) symmetric algebra $S(\mathfrak{H})$. In particular, $D(G/N)$ is commutative.

As a consequence one finds that the N-invariant eigenfunctions $f \in C^\infty(G/N)$ of all $D \in D(G/N)$ have a representation analogous to (5) in terms of the characters of H. Let E_f denote the vector space spanned by the G-translates of f and let π_f be the natural representation of G on E_f.

Theorem 3.2. The mapping π_f is a one-to-one mapping of the set of N-invariant holomorphic eigenfunctions of all $D \in D(G/N)$ (proportional f identified) onto the set of all finite-dimensional irreducible holomorphic representations of G (equivalent representations identified). Moreover

$$f(g \cdot v_0) = (\pi_f(g^{-1})e, e'),$$

where e and e', respectively, are contained in the highest weight spaces of π_f and of its contragredient representation.

References

* Compare the problem indicated in [3, p. 553].

Institute for Advanced Study