It has been shown by Birkhoff [2], [3] that Hilbert's projective metric [4] may be applied to a variety of problems involving linear mappings of a function space into itself. In this note we shall point out that essentially the same metric may be applied to some nonlinear mappings which frequently arise in dynamic programming [1].

Let \(X \) be some set, and let \(P \) denote the set of all nonnegative real-valued functions which have domain \(X \) and are not identically zero. We define an extended real-valued function \(\theta \) on \(P \times P \) as follows:

\[
\theta(f, g) = \log \left(\frac{\sup_{x \in X} f(x)}{\sup_{x \in X} g(x)} \cdot \frac{\sup_{x \in X} g(x)}{\sup_{x \in X} f(x)} \right).
\]

In computing the ratios, we take \(0 \div 0 \) to be 1, and \(a \div 0 \) to be \(+\infty \) if \(a \neq 0 \). It is easy to show that \(\theta \) is an extended pseudo-metric on \(P \). \(\theta(f, g) = 0 \) implies that \(f = \lambda g \) for some constant \(\lambda > 0 \). We say that a subset \(P^* \) of \(P \) is "metric" if \(\theta \) is an extended metric on \(P^* \). That is, if for any \(f, g \in P^* \), \(\theta(f, g) = 0 \) if and only if \(f = g \).

Let \(L \) be a map of \(P \) into \(P \). If

\[
\sup_{x \in X} \frac{L_f(x)}{L_g(x)} < \sup_{x \in X} \frac{f(x)}{g(x)}
\]

for all \(f, g \in P \), such that \(0 < \theta(f, g) < \infty \) then we say \(L \) is "ratio reducing on \(P \)." Note that if \(L \) is ratio reducing on \(P \) it follows at once that \(\theta(Lf, Lg) < \theta(f, g) \) for all \(f, g \in P \) such that \(0 < \theta(f, g) < \infty \).

Thus \(L \) is a contraction mapping with respect to the pseudo-metric \(\theta \). Similar definitions apply on any subset of \(P \). Many linear transformations have been shown [2], [3] to be ratio reducing (or at least ratio nonincreasing). A family \(\{L_{\lambda}\} \) (\(\lambda \) ranging over some set of parameters \(\Lambda \)) is said to be "uniformly ratio reducing" if, given \(f, g \),

\[
\sup_{x \in X} \frac{L_{\lambda}(f(x))}{L_{\lambda}(g(x))} \leq \sup_{x \in X} \frac{f(x)}{g(x)} - \delta_{f, g} \quad \text{for all } \lambda \in \Lambda,
\]

where \(\delta_{f, g} > 0 \) may depend on \(f \) and \(g \) but does not depend on \(\lambda \). Note that if \(\Lambda \) is a finite set then the family \(\{L_{\lambda}\} \) is uniformly ratio reducing if each of its members is ratio reducing.

Theorem. If the family \(\{L_{\lambda}: \lambda \in \Lambda\} \) is uniformly ratio reducing,
then the transformation \(L^1 \) defined by
\[
L^1(f(x)) = \sup_{\lambda \in \Delta} L_\lambda(f(x))
\]
is ratio reducing. If in addition \(L_\lambda(g(x)) > \delta_0 > 0 \) for each \(g \in P \) and all \(\lambda \in \Delta \), then the transformation \(L^2 \) defined by
\[
L^2(f(x)) = \inf_{\lambda \in \Delta} L_\lambda(f(x))
\]
is also ratio reducing.

The proof of the theorem is by straightforward computation. To illustrate the application of this theorem to dynamic programming, let us consider a class of problems referred to as “equations of type III” [1, pp. 125–129]. Suppose we are confronted with a system which may be in any one of \(N+1 \) states (call the states \(s_0, s_1, \ldots, s_N \)), and we are trying to drive the system into state \(s_0 \). At each stage, we begin by knowing a probability distribution \(p = (p_0, p_1, \ldots, p_N) \), where \(p_i \) = probability that the system is in state \(s_i \). We may either observe the system (at a cost \(b > 0 \)), or we may perform an operation \(T_i \) on it which will alter the probability distribution in some way at a cost \(a_i > 0 \) \((i = 1, 2, \ldots, n) \). Then if \(f(p) \) represents the expected cost of driving the system into state \(s_0 \) given that it is initially “known” to be in state \(s_i \) with probability \(p_i \), we see that \(f \) must obey the functional equation

\[
f(p) = \inf \left\{ \sum_{i=1}^{N} p_i f(s_i) + b, f(T_i p) + a_i \right\}
\]

where \(s_i \) denotes the probability distribution which assigns probability 1 to state \(s_i \).

Theorem. There is at most one bounded positive solution to the equation (*).

Proof. Let \(X \) be the set of all possible distributions over the \(N+1 \) possible states with the exception of \((1, 0, \ldots, 0) \). This point \((s_0) \) is in the closure of \(X \). Since the final operation on the system must be an observation, we see that \(f(p) \geq b \). If \(f \) is bounded, it immediately follows that \(\lim_{p \to s_0} f(p) = b \). Let us restrict our attention to the metric subset \(P^* \) of \(P \) consisting of bounded \(f \) such that \(\lim_{p \to s_0} f(p) = b \).

\[
L_0(f(p)) = \sum_{i=1}^{n} p_i f(s_i) + b,
\]

\[
L_i(f(p)) = f(T_i p) + a_i, \quad i = 1, 2, \ldots, n,
\]
are all ratio-reducing on P^*. Thus by our Theorem above
\[L(f(p)) = \inf_{f=0,1,\ldots,n} L_t(f(p)) \]
is ratio-reducing on P^*. Hence, if f and g are distinct elements of P^*, then $\theta(Lf, Lg) < \theta(f, g)$, which proves there can be at most one bounded solution to $f = Lf$.

A similar method may be applied when the system may be in any one of a continuum of states. Note that in addition to proving the uniqueness of the solution (if any) to (*), the above argument shows that if $g \subseteq P^*$, and \{\$g^n\$\} contains a uniformly convergent subsequence, then \{\$g^n\$\} converges uniformly to the solution of (*).

BIBLIOGRAPHY

RAND CORPORATION, SANTA MONICA, CALIFORNIA