NONLINEAR MONOTONE OPERATORS AND CONVEX SETS IN BANACH SPACES

BY FELIX E. BROWDER

Communicated May 10, 1965

Introduction. Let X be a real Banach space, X^* its conjugate space, (w, u) the pairing between w in X^* and u in X. If C is a closed convex subset of X, a mapping T of C into X^* is said to be monotone if

$$(Tu - T_v, u - v) \geq 0$$

for all u and v in C.

It is the object of the present note to prove the following theorem:

Theorem 1. Let C be a closed convex subset of the reflexive Banach space X with $0 \in C$, T a monotone mapping of C into X^*. Suppose that T is continuous from line segments in C to the weak topology of X^* while $(Tu, u)/\|u\| \to +\infty$ as $\|u\| \to +\infty$.

Then for each given element w_0 of X^*, there exists u_0 in C such that

$$(Tu_0 - w_0, u_0 - v) \leq 0$$

for all v in C.

If $C = X$, Theorem 1 asserts that $Tu_0 = w_0$ and reduces to a theorem on monotone operators proved independently by the writer [1] and G. J. Minty [9] and applied to nonlinear elliptic boundary value problems by the writer in [2], [3], and [6]. (See also Leray and Lions [7].) If $C = V$, a closed subspace of X, the conclusion of Theorem 1 is that $Tu_0 - w_0 \in V^\perp$, which yields a variant of the generalized form of the Beurling-Livingston theorem proved by the writer in [4] and [5]. The conclusion of Theorem 1 for $C = X$ was extended by the writer to classes of densely defined operators (see [6] for references) and in [5] to multivalued mappings.

It is easily shown that Theorem 1 generalizes and includes as a special case the following linear theorem of Stampacchia, which has been applied by the latter to the proof of the existence of capacitary potentials with respect to second-order linear elliptic equations with discontinuous coefficients:

Theorem 2. Let H be a real Hilbert space, C a closed convex subset of H, $a(u, v)$ a bilinear form on H which is separately continuous in u.
and \(v \). Suppose that there exists a constant \(c > 0 \) such that \(a(u, u) \geq c\|u\|^2 \) for all \(u \) in \(H \).

Then for each \(w_0 \) in \(H \), there exists \(u_0 \) in \(C \) such that

\[
a(u_0, u_0 - v) \leq (w_0, u - v)
\]

for all \(v \) in \(C \).

1. We denote weak convergence by \(\rightarrow \), strong convergence by \(\rightarrow \).

Lemma 1. If \(u_0 \in C \), \(u_0 \) is a solution of the inequality (2) if and only if

\[
(Tv - w_0, v - u_0) \geq 0
\]

for all \(v \) in \(C \).

Proof of Lemma 1. If for a given \(u_0 \) in \(C \) and all \(v \) in \(C \), we have

\[
(Tu_0 - w_0, u_0 - v) \leq 0,
\]

then since

\[
(Tu_0 - Tv, u_0 - v) \geq 0
\]

by monotonicity, it follows that

\[
(Tv, u_0 - v) \leq (Tu_0, u_0 - v) \leq (w_0, u_0 - v),
\]

i.e.,

\[
(Tv - w_0, v - u_0) \leq 0.
\]

Conversely, suppose the inequality (4) holds for all \(v \) in \(C \). Suppose \(v_0 \in C \), and for \(0 < t \leq 1 \), set

\[
v_t = (1 - t)u_0 + tv_0.
\]

Then \(v_t \in C \), \(v_t - u_0 = tv_0 - u_0 \), and we have

\[
0 \leq (Tv_t - w_0, t(v_0 - u_0)) = t(Tv_t - w_0, v_0 - u_0).
\]

Since \(t > 0 \) may be canceled, we have

\[
(Tv_t - w_0, v_0 - u_0) \geq 0.
\]

If we let \(t \to 0 \) and use the weak continuity of \(T \) on segments in \(C \), we have \(Tv_t \to Tu_0 \), and hence

\[
(Tu_0 - w_0, u_0 - v_0) \leq 0. \quad q.e.d.
\]

Definition. Let \(c(r) = \inf_{\|u\|=r} \{ (Tu, u)/\|u\| \} \). By the hypothesis of Theorem 1, \(c(r) \to + \infty \) as \(r \to + \infty \). We have

\[
(Tu, u) \geq c(\|u\|)\|u\|, \quad u \in C.
\]

Lemma 2. There exists a constant \(M \) which depends only upon the
function $c(r)$ and on $\|w_0\|$ such that if u_0 is a solution of the inequality (2), then $\|u_0\| \leq M$.

Proof of Lemma 2. If

$$(Tu_0 - w_0, u_0 - v) \leq 0, \quad v \in C,$$

we have since $0 \in C$,

$$c(\|u_0\|) \leq (Tu_0, u_0) \leq (Tu_0 - w_0, u_0) + (w_0, u_0) \leq \|w_0\| \cdot \|u_0\|.$$

Hence

$$c(\|u_0\|) \leq \|w_0\|$$

and

$$\|u_0\| \leq M(\|w_0\|, c(r)). \text{ q.e.d.}$$

Definition. If $G \subseteq X \times X^*$, G is said to be a monotone set if $[u, w], [u_1, w_1] \in G$ implies that $(w - w_1, u - u_1) \geq 0$.

G is said to be maximal monotone if it is monotone and maximal in the monotone sets ordered by inclusion.

Lemma 3. Under the hypotheses of Theorem 1, suppose that C has 0 as an interior point and let $G \subseteq X \times X^*$ be given by

$$G = \{[u, w] | u \in C, w = Tu + z, \text{ where } (z, u - v) \geq 0 \text{ for all } v \text{ in } C\}.$$

Then G is a maximal monotone set in $X \times X^*$.

Proof of Lemma 3. G is a monotone set since if $[u, w]$ and $[u_1, w_1] \in G$, with $w = Tu + z, w_1 = Tu_1 + z_1$, then

$$(w - w_1, u - u_1) = (Tu - Tu_1, u - u_1) + (z, u - u_1) + (z_1, u_1 - u) \geq 0.$$

Suppose on the other hand that $[u_0, w_0] \in X \times X^*$ with

$$(w_0 - w, u_0 - u) \geq 0$$

for all $[u, w]$ in G. We assert first that $u_0 \in C$. Otherwise, $u_0 = sv_0$ for some v_0 on the boundary of C with $s > 1$. Let $z_0 = 0$ be an element of X^* such that $(z_0, v_0 - v) \geq 0$ for all v in C. Since 0 is an interior point of C, $(z_0, v_0) > 0$. For each $\lambda > 0$, $[v_0, T\lambda v_0 + \lambda z_0]$ lies in G. Hence

$$0 \leq (w_0 - T\lambda v_0 - \lambda z_0, u_0 - v_0) = (s - 1)(w_0 - T\lambda v_0 - \lambda z_0, v_0).$$

Cancelling $(s - 1) > 0$, we have

$$\lambda(z_0, v_0) \leq (w_0, v_0) - (T\lambda v_0, v_0).$$
which is a contradiction since \((z_0, v_0) > 0\) and \(\lambda\) is arbitrary. Hence \(u_0 \in C\).

In addition, for each \(u\) in \(C\), \([u, Tu]\) lies in \(G\). Hence
\[
(Tu - w_0, u - u_0) \geq 0.
\]
Applying Lemma 1, we have
\[
(Tu_0 - w_0, u_0 - v) \leq 0, \quad v \in C.
\]
Hence \(Tu_0 - w_0 = -z\), where \((z, u_0 - v) \geq 0\) for all \(v\) in \(C\). Hence \(w_0 = Tu_0 + z\), and \([u_0, w_0] \in G\). q.e.d.

Lemma 4. Theorem 1 holds if \(X\) is a finite dimensional Banach space \(F\).

Proof of Lemma 4. We may suppose without loss of generality that \(w_0 = 0\), that \(F\) is a finite dimensional Hilbert space with \(F^* = F\), and that \(C\) spans \(F\) and hence has an interior point \(v_0\) in \(F\). Replacing \(C\) by \(C_0 = v_0 - C\) and defining a new mapping \(T'\) on \(C_0\) by \(T'u = -T(v_0 - u)\), it is easy to verify that we may assume that \(0\) is an interior point of \(C\) and the condition on \((Tu, u)\) is replaced by
\[
(Tu, u - v) \geq c(||u||)||u||
\]
for a given \(v_0\) in \(C\), with \(c(r) \to +\infty\) as \(r \to +\infty\).

Let \(G\) be the maximal monotone set in \(FXF^*\) constructed in Lemma 3. Then \(nG\) is maximal monotone for each positive integer \(n\). By a theorem of Minty [8], for each \(n > 0\), there exists \([u_n, w_n] \in G\) such that
\[
u_n + nw_n = 0.
\]
Since \(w_n = Tu_n + z_n\), where \((z_n, u_n - v) \geq 0\) for all \(v\) in \(C\), we have
\[
-\left(\frac{1}{n} u_n, u_n - v_0\right) = (w_n, u_n - v_0) = (Tu_n, u_n - v_0) + (z_n, u_n - v_0) \geq c(||u_n||)||u_n||,
\]
while
\[
-\left(\frac{1}{n} u_n, u_n - v_0\right) \leq \frac{1}{n} ||u_n|| \cdot ||v_0||.
\]
Thus \(c(||u_n||) \leq n^{-1}||v_0||\), and \(||u_n|| \leq M\), independent of \(n\). We may extract a subsequence which we again denote by \(u_n\) such that \(u_n \to u_0\) in \(F\). Then \(w_n \to 0\). For each \(u\) in \(C\)
\[
(Tu - w_n, u = u_n) \geq 0.
\]
Taking the limit as $n \to \infty$, we have

$$(Tu, u - u_0) \geq 0, \quad u \in C.$$

By Lemma 1,

$$(Tu_0, u_0 - v) \leq 0$$

for all v in C. q.e.d.

Proof of Theorem 1. It suffices to take $w_0 = 0$. For each finite dimensional subspace F of X, let $C_F = C \cap F$, j_F be the injection map of F into X, j_F^* the dual projection map of X^* onto F^*. We set

$$T_F = j_F^*(T|C_F): C_F \to F^*.$$

Then T_F satisfies the hypotheses of Lemma 4, and there exists u_F in C_F such that

$$(T_Fu_F, u_F - v) = (Tu_F, u_F - v) \leq 0, \quad v \in C_F.$$

By Lemma 2, since for u in C_F,

$$(T_Fu, u) = (Tu, u) \geq c(u, u),$$

there exists a constant M independent of F such that $||u_F|| \leq M$. Since X is reflexive and C is weakly closed, there exists u_0 in C such that for every finite dimensional F, u_0 lies in the weak closure of the set $V_F = \bigcup_{F \subseteq F_1} \{u_F\}$.

Let v be an arbitrary element of C, F a finite dimensional subspace of X which contains v. For u_{F_1} in V_F, by Lemma 1,

$$(Tv, v - u_{F_1}) \geq 0.$$

Since $(Tv, v - v_1)$ is weakly continuous in v_1, we have

$$(Tv, v - u_0) \leq 0, \quad v \in C.$$

By Lemma 1, $(Tu_0, u_0 - v) \geq 0$ for v in C. q.e.d.

Bibliography

University of Chicago