A JORDAN DECOMPOSITION FOR OPERATORS IN BANACH SPACE

BY SHMUEL KANTOROVITZ

Communicated by F. Browder, June 30, 1965

Operators T with real spectrum in finite dimensional complex Euclidian space may be characterized by the property

$$e^{itT} = O(t^k), \quad t \text{ real.}$$

Our result is a Jordan decomposition theorem for operators T in reflexive Banach space which satisfy (1) and whose spectrum (which is real because of (1)) has linear Lebesgue measure zero.

1. The Jordan manifold. Let X be a complex Banach space; denote by $B(X)$ the Banach algebra of all bounded linear operators acting on X. For $m = 0, 1, 2, \cdots$, C^m is the topological algebra of all complex valued functions on the real line \mathbb{R} with continuous derivatives up to the order m, with pointwise operations and with the topology of uniform convergence on every compact set of all such derivatives. Fix $T \in B(X)$. Following [3], we say that T is of class C^m if there exists a C^m-operational calculus for T, i.e., a continuous representation $f \mapsto T(f)$ of C^m into $B(X)$ such that $T(1) = I$, $T(f) = T$ if $f(t) = t$, and $T(\cdot)$ has compact support. The latter is then equal to the spectrum of T, $\sigma(T)$. It is known that if T satisfies (1), then it is of class C^m for $m \geq k+2$ and has real spectrum (cf. Lemma 2.11 in [3]).

From now on, let $T \in B(X)$ satisfy (1), and let $T(\cdot)$ be the (unique) C^m-operational calculus for T, for m fixed $\geq k+2$. We write:

1. $|f|_{m,T} = \sum_{|f|_{m,T} \leq 1} \max_{|f|_{m,T} = 1} |f| f \in C^m$;
2. $\|f\|_{m,T} = \sup \{|T(f)x| : f \in C^m, |f|_{m,T} \leq 1\}, x \in X$;
3. $D_m = \{x \in X : |x|_{m,T} < \infty\}$;
4. $D = \cup_{m \geq k+3} D_m$.

We call D the Jordan manifold for T. It is an invariant linear manifold for any $V \in B(X)$ which commutes with T. If $\sigma(T)$ is a finite union of points and closed intervals, then there exists an $m \geq k+2$ such that $D = D_m = X$. This is true for $m = k+2$ if $\sigma(T)$ is a finite point set. It follows in particular that D_{k+2} contains every finite dimensional invariant subspace for T, hence all the eigenvectors of T. It is also true that D contains all the root vectors for T, and is therefore dense in X if the root vectors are fundamental in X.

Theorem 1. Suppose that all nonzero points of $\sigma(T)$ are isolated.
Then the closure of \(D_{k+2} \) contains the closed range of \(T^{k+1} \). For \(k = 0 \) and \(X \) reflexive, \(D_2 \) is dense in \(X \).

2. The Jordan decomposition. If \(W \) is a linear manifold in \(X \), we denote by \(T(W) \) the algebra of all linear transformations of \(X \) with domain \(W \) and range contained in \(W \).

Let \(B \) denote the Borel field of \(R \).

A generalized spectral measure on \(W \) is a map \(E(\cdot) \) of \(B \) into \(T(W) \) such that

(i) \(E(R)x = x \) for all \(x \in W \), and

(ii) \(E(\cdot)x \) is a bounded regular strongly countably additive vector measure on \(B \), for each \(x \in W \).

We can state now our generalization of the classical Jordan decomposition theorem for complex matrices with real spectrum to infinite dimensional Banach spaces.

Theorem 2. Let \(X \) be a reflexive Banach space. Let \(T \in B(X) \) satisfy (1). Suppose \(\sigma(T) \) (which lies on \(R \) because of (1)) has linear Lebesgue measure zero. Let \(D \) be the Jordan manifold for \(T \). Then there exist \(S \) and \(N \) in \(T(D) \) such that

(a) \(T/D = S + N \);
(b) \(SN = NS \);
(c) \(N^{k+1} = 0 \); and
(d) \(p(S)x = \int_{\sigma(T)} p(t) \, dE(t)x, \ x \in D \)

for all polynomials \(p \), where \(E(\cdot) \) is a generalized spectral measure on \(D \) supported by \(\sigma(T) \) and commuting with any \(V \in B(X) \) which commutes with \(T \).

This decomposition is “maximal-unique,” meaning that if \(W \) is an invariant linear manifold for \(T \) for which (a)–(d) are valid with \(W \) replacing \(D \), then \(W \subset D \) and the transformations \(S, N \) and \(E(b) \) \((b \in B)\) corresponding to \(W \) are the restrictions to \(W \) of the respective transformations associated with \(D \).

The proof uses a refinement of the method we applied in the proof of Theorem 3.13 in [3].

It turns out that \(D = D_{k+2} \). For each \(x \in D \), the map \(f \to T(f)x \) of \(C^{k+2} \) into \(X \) has an extension as a continuous linear map of \(C^{k} \) into \(D \) given by

\[
T(f)x = \sum_{|s| \leq k} (1/j!) \int_{\sigma(T)} f^{(s)}(t) \, dE(t)N^s x
\]

(for all \(f \in C^k \) and each \(x \in D \)). The extended map \(f \to T(f) \) of \(C^k \) into \(T(D) \) is multiplicative.
Keeping in mind the usual definition of a resolution of the identity, it is interesting to notice that if \(N \) (or \(S \)) is closable, then \(E(b) \) commutes with \(S \) and \(N \) and \(E(a \cap b) = E(a)E(b) \) for all \(a, b \in B \). This is true in particular if \(k = 0 \), since \(N = 0 \) (cf. (c)) is trivially closable.

Theorem 2 may be given a version fitting into Dunford’s theory of spectral operators [1]. Since \(D = D_{k+2} \), \(D \) is a normed linear space under the norm \(\|x\| = \|x\|_{k+2,T} \). Let us call its completion \(Y \) the Jordan space for \(T \). \(T \) induces in a natural way an operator \(T_Y \in B(Y) \).

Theorem 2'. Let \(T \) be as in Theorem 2 (with \(X \) not necessarily reflexive). Then \((T_Y)^* \) is spectral of class \(Y \) and type \(k \).

The case \(k = 0 \) has a distinguished position if \(X \) is a Hilbert space. By Theorem 5 in [2], Condition (1) by itself is then sufficient for \(T \) to be spectral of scalar type. This is no longer true (in Hilbert space) for \(k \geq 1 \), even when \(\sigma(T) \) is a sequence with 0 as its only limit point. In Banach space (even reflexive) this breaks down even for \(k = 0 \) (cf. [2, p. 176]). Let \(P(\mathbb{R}) \) denote the ring of polynomials over \(\mathbb{R} \). Condition (1) for \(k = 0 \) is equivalent to the condition \(|e^{ip(T)}| < M < \infty \) for all \(p \in P(\mathbb{R}) \) of degree \(\leq 1 \). Dropping this limitation on the degree, we get a criterion for spectrality which is valid in any weakly complete Banach space.

Theorem 3. \(T \in B(X) \) is of class \(C \) and has real spectrum if and only if

\[
\sup_{p \in P(\mathbb{R})} |e^{ip(T)}| < \infty.
\]

If \(X \) is weakly complete, Condition (2) is necessary and sufficient for \(T \) to be spectral of scalar type with real spectrum.

The proof uses Theorem 2 in [4].

References