Uniform asymptotic expansions of the modified Bessel function of the third kind of large imaginary order
HTML articles powered by AMS MathViewer
- by Charles B. Balogh PDF
- Bull. Amer. Math. Soc. 72 (1966), 40-43
References
-
1. A. Erdélyi, Higher transcendental functions, Vol. 2, McGraw-Hill, New York, 1953.
- F. G. Friedlander, Diffraction of pulses by a circular cylinder, Comm. Pure Appl. Math. 7 (1954), 705–732. MR 66182, DOI 10.1002/cpa.3160070407
- N. N. Lebedev, Sur un formule d’inversion, C. R. (Doklady) Acad. Sci. URSS (N.S.) 52 (1946), 655–658 (French). MR 0021144
- F. W. J. Olver, The asymptotic solution of linear differential equations of the second order for large values of a parameter, Philos. Trans. Roy. Soc. London Ser. A 247 (1954), 307–327. MR 67249, DOI 10.1098/rsta.1954.0020
- F. W. J. Olver, The asymptotic expansion of Bessel functions of large order, Philos. Trans. Roy. Soc. London Ser. A 247 (1954), 328–368. MR 67250, DOI 10.1098/rsta.1954.0021
- F. W. J. Olver, The asymptotic solution of linear differential equations of the second order in a domain containing one transition point, Philos. Trans. Roy. Soc. London Ser. A 249 (1956), 65–97. MR 79157, DOI 10.1098/rsta.1956.0015
- Waldemar Schöbe, Eine an die Nicholsonformel anschliessende asymptotische Entwicklung für Zylinderfunktionen, Acta Math. 92 (1954), 265–307 (German). MR 67251, DOI 10.1007/BF02392706
Additional Information
- Journal: Bull. Amer. Math. Soc. 72 (1966), 40-43
- DOI: https://doi.org/10.1090/S0002-9904-1966-11408-8
- MathSciNet review: 0188504