Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Existence and uniqueness of solutions of the second order boundary value problem
HTML articles powered by AMS MathViewer

by Paul Bailey, Lawrence F. Shampine and Paul Waltman PDF
Bull. Amer. Math. Soc. 72 (1966), 96-98
References
    1. E. Picard, Sur l’application des méthodes d’approximations successives a l’étude de certaines équations différentielles ordinaires, J. Math. 9 ( 1893), 217-271. 2. E. Picard, Traité d’analyse, Gauthier-Villars, Paris, 1929.
  • F. Lettenmeyer, Über die von einem Punkt ausgehenden Integralkurven einer Differentialgleichung zweiter Ordnung, Deutsche Math. 7 (1942), 56–74 (German). MR 17830
  • Z. Opial, Sur une inégalité de C. de la Vallée Poussin dans la théorie de l’équation différentielle linéaire du second ordre, Ann. Polon. Math. 6 (1959/60), 87–91 (French). MR 104875, DOI 10.4064/ap-6-1-87-91
  • 5. C. de la Vallée Poussin, Sur l’équation différentielle linéaire du second ordre, J. Math. Pures Appl. 8 (1929), 125-144. 6. W. J. Coles and T. L. Sherman, Two-point problems for non-linear second order ordinary differential equations, Math. Research Center, Univ. of Wisconsin Report 513, Madison, Wis. 1964.
  • Walter Petry, Das Iterationsverfahren zum Lösen von Randwertproblemen gewöhnlicher, nichtlinearer Differentialgleichungen zweiter Ordnung, Math. Z. 87 (1965), 323–333 (German). MR 172466, DOI 10.1007/BF01113202
  • Johann Schröder, Neue Fehlerabschätzungen für verschiedene Iterationsverfahren, Z. Angew. Math. Mech. 36 (1956), 168–181 (German, with English, French and Russian summaries). MR 79822, DOI 10.1002/zamm.19560360503
  • Paul Bailey and Paul Waltman, On the distance between consecutive zeros for second order differential equations, J. Math. Anal. Appl. 14 (1966), 23–30. MR 197848, DOI 10.1016/0022-247X(66)90058-8
  • Paul Bailey and Paul Waltman, On the distance between consecutive zeros for second order differential equations, J. Math. Anal. Appl. 14 (1966), 23–30. MR 197848, DOI 10.1016/0022-247X(66)90058-8
Additional Information
  • Journal: Bull. Amer. Math. Soc. 72 (1966), 96-98
  • DOI: https://doi.org/10.1090/S0002-9904-1966-11434-9
  • MathSciNet review: 0183916