ON THE OSCILLATIONS AND LEBESGUE CLASSES
OF A FUNCTION AND ITS POTENTIALS

BY R. K. JUBERG

Communicated by A. Zygmund, September 7, 1965

Suppose \(f \in L^r(R) \), \(r \geq 1 \), \(R \) a cube in \(E^n \). Then one knows from Sobolev’s theorems [5] that the potential

\[
(0.1) \quad P \to \int_R f(Q) \left| P - Q \right|^{-\alpha} dQ, \quad 0 < \alpha < 1,
\]

is in \(L^s(R) \), \(s^{-1} > \alpha - 1 + r^{-1} \), where \(\left| P - Q \right| \) denotes the Euclidean distance between \(P, Q \in E^n \).

In this note we demonstrate a certain converse proposition. For a non-negative function \(f \in L^r(R) \), \(r \geq 1 \), we assume the potential (0.1) to be in \(L^s(R) \), \(0 \leq s^{-1} < \alpha - 1 + r^{-1} \) (\(s \) a positive real number or \(\infty \)), and in addition make an assumption on the “oscillations” of \(f \) (cf. §1). Then we can conclude that \(f \) is summable to powers exceeding \(r \).

We express the so-called “oscillatory” conditions and present the main theorem, Theorem A, in the next section. The proof of the theorem is direct and simple. In §2 we state a parallel theorem, Theorem B, wherein the assumption on the potential is replaced by the hypothesis that the function is in some “Morrey class” (cf. Morrey [3]; or also Campanato [1]). Theorem B is described perhaps more accurately as a corollary to the proof of Theorem A. In the last section, §3, we show how these results can be indirectly deduced. Therein we use a lemma from a paper by Semenov [4] which relates “Marcinkiewicz classes” (cf. e.g., Zygmund [6]) with “Lorentz” spaces. The conclusion follows then from the inclusion relations between Lorentz spaces and Lebesgue spaces (cf. Lorentz [2]).

1. The principal result. Let \(f \) be a non-negative function summable over \(R \), a cube in \(E^n \). For \(S \) any measurable set in \(E^n \) we indicate its (Lebesgue) measure by \(\text{meas } S \). Set

\[
(1.1) \quad E(x) = \{ P : P \in R, \ f(P) > x \}.
\]

CONDITION I. For some \(a > 0 \), \(0 \leq \lambda \leq 1 \) (\(a \) may depend on \(\lambda \))

\(^1 \) This work was supported in part by the Office of Naval Research under Contract No. Nonr-710(54).
\begin{align}
(1.2) \quad xe^{E(x)1+\lambda} \leq \sup \int_C f(Q) \, dQ, \quad x > a,
\end{align}

where the supremum is taken over all parallel subcubes $C \subseteq \mathbb{R}$ with volume $meas \, E(x)$. Denote by λ the infimum of the set of numbers λ for which (1.2) holds.

If one considers the inequality (1.2) for some fixed x, then it can be interpreted as a condition on the dispersion of the set of points where the function assumes large values (exceeding x). It is for this reason that we refer to the foregoing as a condition on the oscillations of a function (and, similarly, for the alternate conditions presented later in this section).

\textbf{Remark.} One property of the quantity λ is that its reciprocal measures what one might describe as the upper bound (with respect to the exponent) of the Lebesgue classes of f. That is, f is at best in $L^{1/\lambda}$. This observation, however, is seemingly not very interesting. For consider the situation on the line: $n = 1$, R and C intervals. It is clear that for a monotone function $\lambda = 0$. Whereas there are monotone functions in L^p and not in $L^{p+\epsilon}$ for any p and $\epsilon > 0$.

\textbf{Theorem A.} Suppose $f \in L^r(R), \ r \geq 1,$ and the potential (0.1) is in $L^s(R)$ where $0 \leq s^{-1} < \alpha - 1 + r^{-1}$. If $\lambda < \alpha - 1 + r^{-1} - s^{-1}$, then $f \in L^p(R)$ for $p < (1 - \alpha + s^{-1} + \lambda)^{-1}$.

\textbf{Proof.} It follows simply using Hölder's inequality that

\begin{align}
(1) \quad \int_C \int_R f(Q) \, |P - Q|^{-an} \, dQ \, dP \leq \text{(Constant)} \, (\text{meas} \, C)^{1-s^{-1}}.
\end{align}

Now the left side in (1) dominates the quantity

\begin{align}
(2) \quad \text{(dia} \, C)^{-an} \, (\text{meas} \, C) \int_C f(Q) \, dQ.
\end{align}

From (1), (2) and the fact that $(\text{dia} \, C)^{-n} = n^{n/2} (\text{meas} \, C)$ we find that

\begin{align}
(1.3) \quad \int_C f(Q) \, dQ \leq \text{(Constant)} \, (\text{meas} \, C)^{\alpha - s^{-1}}.
\end{align}

Set $\lambda = \lambda + \epsilon$ where $\epsilon > 0$ is any number satisfying the inequality $\lambda + \epsilon < \alpha - 1 + r^{-1} - s^{-1}$. Then on combining (1.2) and (1.3), for sufficiently large x, it follows that

\[\lambda = \lambda + \epsilon < \alpha - 1 + r^{-1} - s^{-1}.\]

\[\int_C f(Q) \, dQ \leq \text{(Constant)} \, (\text{meas} \, C)^{\alpha - s^{-1}}.\]
OSCILLATIONS AND LEBESGUE CLASSES OF A FUNCTION

\[x (\text{meas } E(x))^{1+\lambda} \leq (\text{Constant}) (\text{meas } E(x))^{a^{-1}}; \]

or

\[\text{meas } E(x) \leq (\text{Constant}) \left(\frac{1}{x} \right)^{1/(1+\lambda-a^{-1})}. \tag{3} \]

The desired conclusion results from (3), the boundedness of \(\text{meas } E(x) \), and the fact that

\[\int_R [f(Q)]^p dQ = \rho \int_0^\infty (\text{meas } E(x)) x^{p-1} dx. \]

We shall present now two other conditions that can be used instead of Condition I. The three conditions are ordered according to increasing relative strengths.

CONDITION II. Let \(f^* = f^*(t) \), \(0 < t < \text{meas } R \), be a decreasing function equi-measurable with \(f \). Set

\[\log \left(\sup \int_C f(P) dP / \int_0^t f^*(t) dt \right) \]

\[\mu = \limsup_{\varepsilon \to 0} \log \varepsilon \]

where the supremum in the numerator is to be taken over all parallel subcubes \(C \subset R \) with volume \(\varepsilon \).

CONDITION III. Suppose \(\text{meas } E(x) > 0 \), \(x > 0 \). Set

\[1 + \nu = \limsup \frac{\log[\sup \text{meas } (E(x) \cap C)]}{\log(\text{meas } E(x))} \]

where \(\sup \text{meas } (E(x) \cap C) \) is taken over all parallel subcubes \(C \subset R \) with volume \(\text{meas } E(x) \).

REMARK. The theorem then holds with \(\mu \) or \(\nu \) in place of \(\lambda \).

We observe further that a more local type theory could be developed based on local conditions similar to the above. For example, consider Condition II: For \(P \) fixed in \(R \) formulate (1.4) for a cube with center \(P \) and contained in \(R \). Then shrink the cube down to \(P \).

2. **A parallel theorem.** Let \(S \) be a bounded open set in \(E^n \) of diameter \(\rho_0 \). Denote by \(B(P, \rho) \) the ball with center \(P \) and radius \(\rho \). Let \(q \) and \(\delta \) be real numbers where \(q \geq 1 \) and \(0 \leq \delta \leq n \). A function \(f \) is said to be in the Morrey class \(L^{(q,\delta)}(S) \) if there exists a constant \(K \) such that

\[\int_{B(P,\rho) \cap S} |f(Q)|^q dQ \leq K \rho^\delta \]
for all \(P \subseteq S \) and \(0 \leq \rho \leq \rho_0 \).

We apply this definition in a slightly modified form. Here \(S \) is \(R \), a cube in \(E^n \). We take cubes \(C = C(P, \rho) \) of diameter \(\rho \) centered at points \(P \) of \(R \) instead of balls. Then we replace relation (2.1) by the equivalent relation

\[
\left(\int_{C \cap R} |f(Q)|^\beta dQ \right)^{1/\beta} \leq K(\text{meas } C) \rho
\]

where \(0 \leq \beta \leq g^{-1} \). We denote the corresponding class now by \(L^{(q, \beta)}(R) \).

Theorem B. Let \(f \) be a non-negative function in \(L^{(q, \beta)}(R) \). If \(\lambda < \beta \) then \(f \in L^p(R) \) where \(p < (g^{-1} - \beta + \lambda)^{-1} \).

The proof parallels that of Theorem A. Instead of relation (1.3) we deduce in this case using Hölder's inequality and (2.2) that

\[
\int_{C} f(Q) \, dQ \leq (\text{Constant}) \ (\text{meas } C)^{1-a^{-1}+\beta}.
\]

The proof is completed then just as in the proof of Theorem A.

3. **An indirect proof.** A function \(f \) measurable on \(R \) is said to be in the Lorentz space \(M(\gamma) \), \(0 \leq \gamma \leq 1 \), provided that

\[
||f||_{M(\gamma)} = \sup_{0 < t < \text{meas } R} \frac{\int_0^t f^\ast(t) \, dt}{\gamma} < \infty
\]

where \(f^\ast = f^\ast(t) \), \(0 < t < \text{meas } R \), is a decreasing function equi-measurable with \(|f| \).

We shall say that a function \(f \) in \(R \) is in the Marcinkiewicz class \(\mathcal{M}(\gamma) \), \(0 \leq \gamma \leq 1 \), if it satisfies the condition

\[
\sup_{0 < x < \infty} x(\text{meas } E(x))^{1-\gamma} < \infty
\]

where \(\text{meas } E(x) \) is the distribution function of \(|f| \).

The following lemma which relates Lorentz spaces and Marcinkiewicz classes appears in [4].

Lemma. The Marcinkiewicz class \(\mathcal{M}(\gamma) \) coincides with the space \(M(\gamma) \). In addition

\[
\sup_x x(\text{meas } E(x))^{1-\gamma} \leq ||f||_{M(\gamma)} \leq \gamma^{-1} \sup_x x(\text{meas } E(x))^{1-\gamma}.
\]
Now consider again the proof of Theorem A. We deduce from (3.2), using relation (3) in the proof, that \(f \in M(\alpha - \lambda - s^{-1}) \). Then on applying the Lemma it follows that \(f \in M(\alpha - \lambda - s^{-1}) \). The desired conclusion is derived finally from the inclusion relation \(M(\gamma) \subset L^{(1-\gamma)^{-1}} \), \(\gamma' < \gamma \).

REFERENCES

1. S. Campanato, Proprietà di inclusione per spazi di Morrey, Ricerche Mat. 12 (1963), 67–86.

UNIVERSITY OF MINNESOTA