
Page 796, line 7: This line should read

$$B_i(t) = \frac{2}{\pi} D_i(1) (1 - r^2)^{-1/2} - \frac{2}{\pi} \int_r^1 (t^2 - r^2)^{-1/2} \frac{dD_i(t)}{dt} \, dt, \quad i = 1, 2.$$

Page 796, line 8: The sentence ends at the word integrable. Delete "and therefore $D_i(1) = 0.""

Page 807, line 3: This line should read

$$= \frac{1}{\pi} \int_0^\alpha \frac{dC}{d\beta} \cosh k (\alpha - \beta)^{1/2} \, d\beta + \frac{C(0)}{\pi} \cosh (k\alpha^{1/2}) \cdot \frac{\cosh (k\alpha^{1/2})}{\alpha^{1/2}}.$$

Page 807, line 6: This line should read

$$+ \frac{i}{\pi} \int_0^1 \frac{\sinh k(\beta - \alpha)^{1/2}}{(\beta - \alpha)^{1/2}} \, d\beta \cdot \left[\int_0^\beta \frac{dC}{d\gamma} \cosh k(\beta - \gamma)^{1/2} \, d\gamma + \frac{C(0)}{\beta^{1/2}} \cosh (k\beta^{1/2}) \right]$$

The expression $(\mu - \lambda)$ on page 877, line 4, should actually be: $(\lambda - \mu)$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use