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1. Introduction. In this paper, Hilbert space, denoted by /2, is un
derstood to be the space of all sequences (#*) such that X)£i #?< °° 
with d((Xi), (^)) = ( 2 r » i (*•-*«)2)1/2. We let the countable infinite 
product of lines be regarded as s==IL°Li /? where, for each i > 0 , I? 
denotes the open interval (0, 1). 

Let the symbol " ^ " mean "is homeomorphic to." We shall prove 

THEOREM I. h~s. 

As a consequence of this theorem it is possible to investigate topo
logical properties of l2 as topological properties of s. In turn s is a 
"natural" subset of the Hilbert cube (the countable infinite product 
of closed intervals) which facilitates the study of 5. 

In 1928 in [5, pp. 94-96] Fréchet raised the general question as to 
which linear topological spaces were homeomorphic to each other. 
Specifically he asked whether l2 (called 0) was homeomorphic to 5 
(called Eu). 

In 1932 in [2, p. 233], Banach stated that Mazur had shown that 
5 was not homeomorphic to Z2. Subsequently it was understood that 
the question was still open. 

The topological classification of complete linear metric spaces initi
ated by Fréchet has been the subject of considerable research activity 
with noteworthy contributions by Bessaga, Kadee, Klee and Pelczyn-
ski among others. See the bibliography in [3], Particular attention 
has been given to Fréchet spaces: locally convex complete linear 
metric spaces. With Theorem I of this paper and recent profound 
results of Kadec and of Bessaga and Pelczynski, the topological 
classification of separable infinite-dimensional Fréchet spaces is now 
complete. All such spaces are homeomorphic to each other. 

The results leading to this theorem are the following. In a paper to 
be published in Dokl. Akad. Nauk SSSR, Kadec gives a proof of the 
theorem "All separable infinite-dimensional Banach Spaces are 
homeomorphic." Earlier in [4] and in [3, Theorem 9.2], Bessaga and 
Pelczynski have shown "Under the conjecture that all separable in-

1 This research was supported under NSF Grant GP 4893. 
1 The author is indebted to A. Lelek and A. Peiczynski for interesting conversa

tions associated with this problem. 
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finite-dimensional Banach spaces are homeomorphic with Z2, every 
separable infinite-dimensional Fréchet space X, with Xy^s, is homeo
morphic with Z2." Therefore, with Theorem I of this paper, the classi
fication is complete. 

2. The strategy of the proof of Theorem L The proof of Theorem I 
uses only standard topological methods and two recent results, (A) 
and (B) below, which are not proved here. (However, an outline of 
the proof of (B) is given in §3.) Otherwise, this paper is self-con
tained. 

(A) (Bessaga-Pelczynski) [3] or [4]. 

hr^ hX s* 

(B) [l] . For any separable metric space Z and any countable col
lection {Ki\izi of compact subsets of ZXs, 

f(ZX A V K^\~ZX 

Taking Z as a single-point set, the following theorem is a corollary 
of (B). 

(C) For any countable collection {i£t}tai of compact subsets of s, 

[•\£4 
Taking Z~l2, the following theorem is a corollary of (A) and (B). 
(D) For any countable collection {i£t} ^ i of compact subsets of Z2, 

[fc\£4 h 

With these observations, the strategy of the proof is the following. 
We exhibit, in §4, a particular set Z2 which, by (D), we show to be 
homeomorphic to Z2. Then, in §5, we show (E) a homeomorphism ƒ 
of Z2 into 5 such that A/(Z2) is the countable union of compact sets. 
By (C), ƒ(22) ~s. Thus we have 

D_ E C 
h ~ 1<L ~ ƒ (Z2) ~ s 

and hence Z2^s. 

3. Outline of a proof of (B). We have s=IL°°=i tf where, for each 
j , Ij is the open interval (0, 1). Then we may write 5 as w?ml Si where, 
for each i, Si is a countable infinite product of factors /ƒ. Regarding 
ZXs as ZXirfLi Si, we let gi be the projection of ZXs onto Si. Observe 
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that, for each i with Ki as in the statement of (B), gi(Ki) is compact. 
I t can be shown (as in §3 of [l]) that , for each i, there is a homeo

morphism pi of Si onto itself and a factorization Si=*sl X s / ' (where 
each of si and si' is a countable infinite product of factors Ij) such 
that if (Ti denotes the projection of si X s / ' onto si, then (TiPigi{Ki) is 
a single point. In other words, pigi(Ki) has infinite deficiency in st\ 

Let p be the homeomorphism of Z x U i l j s* onto itself defined co-
ordinatewise as pt- on Si and as the identity on Z. I t now suffices to 
exhibit a homeomorphism of ( Z X s ) \ l C i p(Kl) onto ZX$-

In what follows we let K0=p(K0) be the null set. 
ConsideringZXs a s Z x X L ^ i (**' X s / ' ) , we may exhibit (as in §5 of 

[l]) a sequence {ftt};èi such that 
(1) for each i ^ l , ft* is a homeomorphism of (ZXs) \UJ«o p(-^y) 

onto (ZXs) \U:JpC£y) , 
(2) for each i è 1, ft< affects only coordinates in s/ , and 
(3) the infinite composition • • • • ft3 • ft2 • hi is a homeomorphism A 

carrying ( Z X s ) \ U ^ 0 p ( ^ ) onto Z X s . 
Thus ftp will be the desired homeomorphism of (ZXs)\UjL0 Kj o n t o 

Z X s . 
In conclusion, we remark that the homeomorphism hi can be con

sidered as a modification of a homeomorphism defined coordinate-
wise as (1) the identity on coordinate spaces other than s/ and (2) a 
homeomorphism which moves the single point (Xigip(Ki) off si. The 
modification requires that hi move only p(2£t-)\U}~i p(Kj) off Z X s 
rather than the larger set gr1<^«"1(o,»|[tP(-K«,))\UJ-oP(J^-i)* 

4. Description of h. For each i ^ l , let W*~ {(#;) | (#/)£& and for 
all k>i, Xk = 0}. Then for each i, Wi is homeomorphic to the Eu
clidean space Ei and is the countable union of compact sets. Thus 
W = U£i Wi is the countable union of the compact sets. Let M\ 
= {(xj) | fa) G h \ W and xi = 1} . Let ~h = {(%) | (*,) £ l2\W and 
X)£i #J — 1} • We observe that 12<^Mi~(l<i\W)~l2. The first homeo
morphism follows by projection from the point (xl) for which Xi = — 1 
and xj = 0 for j>l. The second homeomorphism follows by the 
formula (1, x2, xz, • • • )—»(x2, *3, x*, • • • ) and the third by State
ment (D) of §2. Thus 22 is homeomorphic to Z2. 

We note, for use in §5, tha t 

?2 = \ (aty) | (xy) G K 2 *i ^ 1 an(i> f°r each j ^ l , X) xi < 1 r • 

5. Description of the homeomorphism ƒ of ~h into s. With (xi) 
denoting a point of /2 and (;yt) denoting a point of s (where 0 <yi < 1, 
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for each i) we define a function ƒ coordinatewise as: 

(1 + #i)/2 and for each i > 1, 

/ *zj 2 \ 1 / 2 

(1 - JLxn +%i 

The verification of the following four properties will complete the 
proof of our Theorem I : 

(1) ƒ is one-to-one from 1% into s, 
(2) ƒ is continuous, 
(3) jf-1 is continuous, 
(4) s\f(t2) is the countable union of compact sets. 

(1) For any i>0 and any point (x t)Gl2, we have S î - i ^ ^ l -
Therefore \xt\ < ( 1 — ]Cl-î x ; ) 1 / 2 and thus 0 < y < < l . Hence ƒ carries 
I2 into 5. Also if (#,-) and (x/) are different points of 22 with images 
(yi) and (y/ ) in s, then there is a least number fe such that Xjc 7^ 0C]c • 
From the formulas, yu^yi and thus (y^T^iyi)-

(2) Since, by formula, each coordinate function is continuous, 
then ƒ must be continuous. 

(3) To see that f~~l is continuous we consider solving for Xi in terms 
of yu ' ' ' > y<* Clearly, for each i, Xi is a continuous function of 
yit ' ' ' $ yi- Also we know that for (xi)Çzh, ]C<li#? = l ' Therefore 
Z""1 must be continuous since convergence in the norm and con
vergence in each coordinate gives convergence in Z2. 

(4) We wish to verify tha t s\f(jh) is a countable union of compact 
sets. Since h is a separable complete metric space, we know tha t k 
and thusZ2 are absolute Gs's. Letting J00 = H £ . i *̂* where I* is the closed 
interval [0, l ] , we have / Ö Ü O C J " and we know that /°°V(^) *s a 

countable union of compact sets (r»)t-fei. 
For each j > 0 , let 2?,-= {(yi)\ (ydGs and, for each i, l / 2 ^ y t - ^ l 

— 1/2'}. Then 2?y is a compact subset of s. Since {jRyP\7\|i, j > 0 } is 
a countable union of compact sets, it suffices to show that for any 
point (^i)G(AUjli 2?y), there is a point (xi)£?2 for which ƒ((#*) ) 

= (*). 
Clearly, for each point (y<)£s, the formulas solved for the y / s 

yield a particular sequence (xt) with ]T)*Li #* 2S1- We note that (xi) 
may have only finitely many nonzero coordinates but, in this case, 
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Given (y*)G(AU<li Rj) and any Ô>0 there exist an integer k and 
positive numbers €1 and e2 such tha t 

0 < yk < €i or 1 — €i < yh < 1, 

and this statement implies 

( h-\ A 1/2 / k-l A 1/2 

1 — Z) */) — «I < I ** I < f i — Z) ^ ) > 
and this statement implies 

0 < (l - Z) % ) < S and a;* 5̂  0. 

Therefore there is a point (xt) of Z2 such that ƒ((#*•)) =yit 
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