Hilbert space is homeomorphic to the countable infinite product of lines
HTML articles powered by AMS MathViewer
- by R. D. Anderson PDF
- Bull. Amer. Math. Soc. 72 (1966), 515-519
References
- R. D. Anderson, Topological properties of the Hilbert cube and the infinite product of open intervals, Trans. Amer. Math. Soc. 126 (1967), 200–216. MR 205212, DOI 10.1090/S0002-9947-1967-0205212-3 2. S. Banach, Théorie des opérations linéaires. Monografie Matematyczne, Warsaw, 1932.
- C. Bessaga, On topological classification of complete linear metric spaces, Fund. Math. 56 (1964/65), 251–288. MR 178322, DOI 10.4064/fm-56-3-250-288
- C. Bessaga and A. Pełczyński, Some remarks on homeomorphisms of $F$-spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 265–270. MR 139917 5. M. Fréchet, Les éspaces abstraits, Paris, 1928. 6. M. I. Kadec, On topological equivalence of separable Banach spaces, Dokl. Akad. Nauk. SSSR (to appear).
Additional Information
- Journal: Bull. Amer. Math. Soc. 72 (1966), 515-519
- DOI: https://doi.org/10.1090/S0002-9904-1966-11524-0
- MathSciNet review: 0190888