Representations of complex semisimple Lie groups and Lie algebras
HTML articles powered by AMS MathViewer
- by K. R. Parthasarathy, R. Ranga Rao and V. S. Varadarajan PDF
- Bull. Amer. Math. Soc. 72 (1966), 522-525
References
- François Bruhat, Sur les représentations induites des groupes de Lie, Bull. Soc. Math. France 84 (1956), 97–205 (French). MR 84713, DOI 10.24033/bsmf.1469
- Harish-Chandra, On some applications of the universal enveloping algebra of a semisimple Lie algebra, Trans. Amer. Math. Soc. 70 (1951), 28–96. MR 44515, DOI 10.1090/S0002-9947-1951-0044515-0
- Harish-Chandra, Representations of a semisimple Lie group on a Banach space. I, Trans. Amer. Math. Soc. 75 (1953), 185–243. MR 56610, DOI 10.1090/S0002-9947-1953-0056610-2
- Harish-Chandra, Representations of semisimple Lie groups. II, Trans. Amer. Math. Soc. 76 (1954), 26–65. MR 58604, DOI 10.1090/S0002-9947-1954-0058604-0
- Nathan Jacobson, Lie algebras, Interscience Tracts in Pure and Applied Mathematics, No. 10, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0143793
- Bertram Kostant, Lie group representations on polynomial rings, Amer. J. Math. 85 (1963), 327–404. MR 158024, DOI 10.2307/2373130
Additional Information
- Journal: Bull. Amer. Math. Soc. 72 (1966), 522-525
- DOI: https://doi.org/10.1090/S0002-9904-1966-11528-8
- MathSciNet review: 0199314