Self-equivalences of $\left ( {n - 1} \right )$-connected $2n$-manifolds
HTML articles powered by AMS MathViewer
- by P. J. Kahn PDF
- Bull. Amer. Math. Soc. 72 (1966), 562-566
References
- M. Arkowitz and C. R. Curjel, The group of homotopy equivalences of a space, Bull. Amer. Math. Soc. 70 (1964), 293–296. MR 163313, DOI 10.1090/S0002-9904-1964-11131-9
- Sze-tsen Hu, Homotopy theory, Pure and Applied Mathematics, Vol. VIII, Academic Press, New York-London, 1959. MR 0106454
- L. K. Hua and I. Reiner, On the generators of the symplectic modular group, Trans. Amer. Math. Soc. 65 (1949), 415–426. MR 29942, DOI 10.1090/S0002-9947-1949-0029942-0
- P. J. Kahn, Characteristic numbers and oriented homotopy type, Topology 3 (1965), 81–95. MR 172306, DOI 10.1016/0040-9383(65)90071-6
- Paul Olum, Self-equivalences of pseudo-projective planes, Topology 4 (1965), 109–127. MR 178468, DOI 10.1016/0040-9383(65)90053-4
- Dieter Puppe, Homotopiemengen und ihre induzierten Abbildungen. I, Math. Z. 69 (1958), 299–344 (German). MR 100265, DOI 10.1007/BF01187411 7. Weishu Shih, On the group ε [X] on homotopy equivalence maps, Bull. Amer. Math. Soc. 70 (1964), 361-365.
- C. T. C. Wall, Classification of $(n-1)$-connected $2n$-manifolds, Ann. of Math. (2) 75 (1962), 163–189. MR 145540, DOI 10.2307/1970425
Additional Information
- Journal: Bull. Amer. Math. Soc. 72 (1966), 562-566
- DOI: https://doi.org/10.1090/S0002-9904-1966-11542-2
- MathSciNet review: 0190936