MULTIPLICATION IN GROTHENDIECK RINGS
OF INTEGRAL GROUP RINGS

BY D. L. STANCL

Communicated by I. Reiner, June 24, 1966

1. Introduction. Let G be a finite group, Z the ring of rational integers, and form the Grothendieck ring $K^0(ZG)$ of the integral group ring ZG. Swan [4] has described multiplication in $K^0(ZG)$ when G is cyclic of prime power order. The purpose of this note is to present results which describe multiplication in $K^0(ZG)$ when G is cyclic or elementary abelian. Full details will appear elsewhere.

Let Q denote the rational field, and recall that the elements of $K^0(QG)$ are Z-linear combinations of symbols $[M^*]$, where M^* ranges over all finitely-generated left QG-modules, and similarly for $K^0(ZG)$. We define a ring epimorphism $\theta: K^0(ZG) \to K^0(QG)$ by $\theta[M] = [Q \otimes_Z M]$, and call any linear mapping $f: K^0(QG) \to K^0(ZG)$ such that $\theta f = 1$ a lifting map for $K^0(ZG)$. Since the Jordan-Hölder Theorem holds for QG-modules, $K^0(QG)$ is the free abelian group with basis $\{[M^*_i]: 1 \leq i \leq m\}$, where $\{M^*_i: 1 \leq i \leq m\}$ is a full set of non-isomorphic irreducible QG-modules. Swan [4] has shown that to describe multiplication in $K^0(ZG)$ it suffices to describe the products $f[M^*_i] \cdot f[M^*_j]$ for $1 \leq i, j \leq m$, and $f[M^*_i]x$, for $1 \leq i \leq m$ and $x \in \ker \theta$.

2. Statement of results. Let G be cyclic of order n with generator g. For each s dividing n, ζ_s will denote a primitive sth root of unity, and Z_s will denote the ZG-module $Z[\zeta_s]$ on which g acts as ζ_s. Similarly, Q_s will denote the QG-module $Q(\zeta_s)$. Then $K^0(QG)$ is the free abelian group with basis $\{[Q_s]: s \divides n\}$, and $f: K^0(QG) \to K^0(ZG)$ by $f[Q_s] = [Z_s]$ is a lifting map. Swan [4] has shown that f is a ring homomorphism. Also, for each s dividing n, G_s will denote the quotient group of G of order s, and if $s \divides t$, $N_{s/t}$ will denote the norm from Q_s to Q_t. By the results of Heller and Reiner [2],

$$\ker \theta = \left\{ \sum_{s \divides n} ([A_s] - [Z_s]): A_s = Z_s\text{-ideal in } Q_s \right\}.$$

Theorem 1. Multiplication in $K^0(ZG)$ is given by the formula

$$[ZG_r][A_s] = \sum_d ([N_{s/r}(A_s)Z_d] - [Z_d]),$$

for all r, s dividing n, where $s' = s/(r, s)$ and d ranges over all divisors of $[r, s]$ such that $(r, s)/d, s' = 1.$
MULTIPLICATION IN GROTHENDIECK RINGS

THEOREM 2. If G is an elementary abelian group, multiplication in $K^0(ZG)$ can be explicitly determined.

We remark that it is possible to give formulas which describe multiplication in $K^0(ZG)$ when G is elementary abelian. These formulas will not be included here.

3. Proof of Theorem 1. We first suppose that $r = p^a$, for some prime p and nonnegative integer a, and write $s = p^b$, $(p, t) = 1$. If $a = 0$ or $b = 0$, the theorem is trivial. Let $Z = Z_s/A_*$ and for each i dividing s, let Z_i denote the Z-module Z on which g acts as x_i reduced modulo A_*. It suffices to find $M = ZG_{x} \otimes Z \hat{Z}$. Since $ZG_{x} \cong Z[x]/(x^a - 1)$, $M \cong \hat{Z}(x)/(x^a - 1)$. If $a \leq b$, then in $\hat{Z}[x]$, $x^a - 1 = \prod_k (x - x_i^b)$, $1 \leq k \leq p^a$, and thus $M \cong \sum_k \hat{Z}(x_i^b)$. A calculation with norms now yields the desired result. If $a > b$, then $x^a - 1$ factors in $\hat{Z}[x]$ as follows: $x^a - 1 = \prod_k (x - x_i^b) \prod_{i,j} (x^{p^i} - x_j^b)$, where $1 \leq k \leq p^a$, $b + 1 \leq i \leq a$, and $1 \leq j \leq p^b$ with $(p, j) = 1$. Therefore

$$M \cong \sum_k \hat{Z}(x_i^{p_k}) + \sum_{i,j} (Z_{x_i^{p_k}}/A_*Z_{x_i^{p_k}})(x_j^{p_k})$$

where $(Z_{x_i^{p_k}}/A_*Z_{x_i^{p_k}})(x_j^{p_k})$ denotes the Z-module $Z_{x_i^{p_k}}/A_*Z_{x_i^{p_k}}$ on which g acts as $x_j^{p_k}$. Again, a calculation with norms will yield the desired result. This proves the theorem for the case $r = p^a$. The general case follows by the use of induction on the number of distinct prime divisors of r.

4. Proof of Theorem 2. In order to prove Theorem 2, we need several lemmas.

LEMMA 1. Let G be an abelian group, F an algebraic number field which is a splitting field for G, and R the ring of algebraic integers of F. Then multiplication in $K^0(RG)$ can be explicitly determined.

Let G be an elementary abelian group and write $G = G_1 \times \cdots \times G_k$, where G_i is cyclic of order p with generator g_i, for $1 \leq i \leq k$. Let ξ be a primitive pth root of unity, $F = Q(\xi)$, $R = Z[\xi]$, and denote by $F(a_1, \cdots, a_k)$ the FG-module F on which g_i acts as ξ^a_i, where $1 \leq a_i \leq p$ for $1 \leq i \leq k$. Similarly, if A is any R-ideal in F, $A(a_1, \cdots, a_k)$ will denote the R-module A on which g_i acts as ξ^a_i. Note that, by restriction of operators, $F(a_1, \cdots, a_k)$ and $A(a_1, \cdots, a_k)$ are QG- and Z-modules, respectively. It is easy to prove that the QG-modules of form $F(\phi, \cdots, \phi, p, 1, a_{j+1}, \cdots, a_k)$, where $1 \leq j \leq k$, together with the trivial module Q, form a full set of nonisomorphic irreducible QG-modules.

Define $\psi: K^0(ZG) \rightarrow K^0(RG)$ by $\psi[Y] = [R \otimes Z Y]$, where $R \otimes Z Y$ is an RG-module with action of R given by $r'(r \otimes y) = r'r \otimes y$, for all
r' \in R$, and action of G given by $g(r \otimes y) = r \otimes gy$, for all $g \in G$. Similarly, define $\eta: K^0(QG) \to K^0(FG)$ by $\eta[y^*] = [F \otimes_Q Y^*]$.

Lemma 2. ψ and η are ring homomorphisms and the following diagram commutes and is exact:

\[
0 \longrightarrow \ker \theta_R \longrightarrow K^0(RG) \overset{\theta_R}{\longrightarrow} K^0(FG) \longrightarrow 0
\]

\[
0 \longrightarrow \ker \theta_Z \longrightarrow K^0(ZG) \overset{\theta_Z}{\longrightarrow} K^0(QG) \longrightarrow 0
\]

Let $\Phi_p(x)$ denote the cyclotomic polynomial of order p. If we apply ψ to $[A(p, \ldots, p, 1, a_{j+1}, \ldots, a_k)] \subseteq K^0(ZG)$, we note that $\Phi_p(g_j)$ annihilates $R \otimes_z A(p, \ldots, p, 1, a_{j+1}, \ldots, a_k)$. Since $\Phi_p(x)$ splits into linear factors in $R[x]$, this gives us a composition series for $R \otimes_z A(p, \ldots, p, 1, a_{j+1}, \ldots, a_k)$. If we denote by $A'^{(t)}$ the ideal conjugate to A under the Q-automorphism of F which takes ξ into ξ^t, we thus obtain

\[
\psi[A(p, \ldots, p, 1, a_{j+1}, \ldots, a_k)] = \sum_t [A'^{(t)}(p, \ldots, p, t, a_{j+1}, \ldots, a_k)], \text{ where } 1 \leq t \leq p - 1.
\]

We now use the formulas for $\ker \theta_Z$ and $\ker \theta_R$ obtained by Heller and Reiner [2], and our formula for $\psi[A(p, \ldots, p, 1, a_{j+1}, \ldots, a_k)]$, to show that $\psi: \ker \theta_Z \to \ker \theta_R$ is monic. Lemma 2 then implies that $\psi: K^0(ZG) \to K^0(RG)$ is monic. Now define $f_R: K^0(FG) \to K^0(RG)$ by $f_R[F(a_1, \ldots, a_k)] = [R(a_1, \ldots, a_k)]$. It is clear that f_R is a lifting map for $K^0(RG)$, and it is easy to show that f_R is a ring homomorphism. Since ψ is monic, we may define $f_Z = \psi^{-1}f_R \eta$. Then f_Z is a lifting map for $K^0(ZG)$ and is a ring homomorphism. Finally, since F is a splitting field for G, multiplication in $K^0(RG)$ is known by Lemma 1, and hence multiplication in $K^0(ZG)$ can be explicitly determined by the use of the monomorphism ψ. This completes the proof of Theorem 2.

Bibliography

University of Illinois