MULTIPLICATIVE FIBRE MAPS

BY LARRY SMITH

Communicated by John Milnor, January 9, 1967

In this note we shall outline a result concerning the cohomology of a multiplicative fibre map. To fix our notation we shall assume that

\[F \xrightarrow{i} E \xrightarrow{\pi} B \]

is a Serre fibre space such that

1. \(F, E, B \) are \(H \)-spaces (homotopy associative) and \(F \to E, E \to B \) are \(H \)-maps.
2. \(B \) is simply connected.
3. \(H^*(B; \mathbb{Z}_p) \) is a polynomial algebra, where \(\mathbb{Z}_p \) denotes the integers modulo \(p \), \(p \) a prime.
4. \(H_*(B; \mathbb{Z}_p) \) is a commutative algebra.

The result that we shall establish is

THEOREM. If \(H^*(E; \mathbb{Z}_p) \) and \(H^*(B; \mathbb{Z}_p) \) are of finite type and \(p \) is an odd prime, then

\[\text{Jet}^*(F; \mathbb{Z}_p) \cong \text{Tor}_{H^*(B; \mathbb{Z}_p)}(H^*(E; \mathbb{Z}_p)) \]

as an algebra over \(\mathbb{Z}_p \). (A similar result holds over the rationals \(\mathbb{Q} \).)

The result for \(p = 2 \) is more complicated to state and is treated in Theorem 3.

In fact, as we shall see, we can compute the indicated torsion product simply from a knowledge of the cohomology map

\[\pi^*: H^*(B; \mathbb{Z}_p) \to H^*(E; \mathbb{Z}_p). \]

Results and techniques similar to these have been used in [8] to compute the \(\mathbb{Z}_p \)-cohomology of stable two stage Postnikov systems.

This announcement serves as an introduction to the joint work of J. C. Moore and the author that will appear elsewhere.

1. **Algebra.** Throughout this section \(k \) will denote a fixed field and \(\otimes \) will mean \(\otimes_k \). We shall assume that the reader is familiar with the material covered in the homological algebra section of [1]. All modules are assumed of finite type. All algebras will be assumed graded augmented and connected.

DEFINITION. If \(\Gamma \) is a Hopf algebra over \(k \), an ideal \(I \subset \Gamma \) is called
MULTIPlicative FIBRE MAPS

a Hopf ideal, iff
\[\nabla(I) \subset \Gamma \otimes I + I \otimes \Gamma \]
where \(\nabla: \Gamma \to \Gamma \otimes \Gamma \) is the coproduct in \(\Gamma \).

Proposition 1. If \(\Gamma \) is a commutative and cocommutative Hopf algebra over \(k \), \(I \subset \Gamma \) is a Hopf ideal, then there exists a unique sub-Hopf algebra \(\Lambda \subset \Gamma \) such that \(I = \Lambda \circ \Gamma \). (\(\Lambda = \ker \Delta \to k \).)

Proof. Let \(\Omega = \Gamma / I \). Then \(\Omega \) is a Hopf algebra in a natural way and the natural map
\[\nu: \Gamma \to \Omega \]
is an epimorphism of Hopf algebras. Passing to duals we obtain a monomorphism of Hopf algebras
\[\nu^*: \Omega^* \to \Gamma^*. \]
Since \(\Gamma^* \) is commutative we can set \(A = \Gamma^*/\Omega^* \). Passing to duals again and identifying \(\Gamma \) with its double dual we obtain \(A^* \subset \Gamma^* \). If we set \(\Lambda = A^* \) it is straightforward to verify that \(\Lambda \) has the required properties (see for example Proposition 4.4 of [7]).

Notation. Let \(\Gamma, \ A \) be commutative and cocommutative Hopf algebras over \(k \), \(\phi: \Gamma \to A \) a map of Hopf algebras. Then \(\ker \phi \subset \Gamma \) is a Hopf ideal. Hence by Proposition 1 there is a sub-Hopf algebra \(\Lambda \) of \(\Gamma \) with \(\Lambda \circ \Gamma = \ker \phi \). We will adopt the notation subker \(\phi \) for \(\Lambda \).

Proposition 2. Suppose that \(\Gamma \) is a commutative, cocommutative Hopf algebra over \(k \), \(A \) is a Hopf algebra over \(k \) and \(\phi: \Gamma \to A \) is a map of Hopf algebras, then
\[\text{Tor}_r(k, A) \cong A/\phi \otimes \text{Tor}_{\text{subker} \phi}(k, k) \]
as an algebra.

Proof. According to [7, 4.4] \(\Gamma \) is a free subker \(\phi \)-module. Hence by [2, Theorem 6.1 p. 349] we have a spectral sequence \(\{ E_r, d_r \} \) such that
\[E_r \Rightarrow \text{Tor}_r(k, A), \]
and if \(\Omega = \Gamma/\phi \)
\[E_2 = \text{Tor}_0(\text{Tor}_{\text{subker} \phi}(k, k), A). \]
But \(\Omega \subset A \) is a sub-Hopf algebra, hence by [7, 4.4] again, \(A \) is a free \(\Omega \)-module. Therefore the edge homomorphism of the spectral sequence provides an isomorphism
Finally as in [1, §2.3] one can show that \(\text{Tor}_{\text{subker}} \phi(k, k) \) is a trivial \(\Omega \)-module, and hence
\[
A \otimes Q \text{Tor}_{\text{subker}} \phi(k, k) \cong A/\Omega \otimes \text{Tor}_{\text{subker}} \phi(k, k)
\]
and the result follows. □

Notation. We shall adopt the notation \(P[x_1, \ldots, x_n, \ldots] \) for a graded polynomial algebra over \(k \) on generators \(x_1, \ldots \) of degree \(\deg x_1, \ldots \).

Similarly \(E[y_1, \ldots] \) will denote a graded exterior algebra on generators \(y_1, \ldots \).

We note that if the characteristic of \(k \) is not 2 then \(\deg x_1, \ldots \) are all even.

We are now ready to make our main calculation. We therefore make the following assumptions:

(1) \(k = \mathbb{Z}_p \), \(p \) any prime or \(k = \mathbb{Q} \) the rational numbers.

(2) \(\Gamma \) is a Hopf algebra over \(k \)
 (a) As an algebra \(\Gamma \cong P[x_1, \ldots] \).
 (b) As a coalgebra \(\Gamma \) is commutative.

(3) \(A \) is a Hopf algebra over \(k \) and \(\phi: \Gamma \to A \) is a map of Hopf algebras.

Main Calculation. Under the above conditions
\[
\text{Tor}_r(A, k) \cong A/\phi \otimes E[u_1, \ldots]
\]
where
\[
u_i \subseteq \text{Tor}_r^1(A, k) \quad i = 1, \ldots.
\]

Proof. By Proposition 2,
\[
\text{Tor}_r(A, k) \cong A/\phi \otimes \text{Tor}_{\text{subker}} \phi(k, k).
\]

By construction subker \(\phi \subset \Gamma \) is a sub-Hopf algebra. By Borel's structure theorem for Hopf algebras over \(k \) [7, 7.11] subker \(\phi \cong P[v_1, \ldots] \) and the result now follows by the graded version of [6, Theorem 2.2, p. 205]. □

2. Multiplicative fibre maps. Suppose that \(F \to E \to B \) is a Serre fibre space, \(B \) simply connected and all cohomology in sight is of finite type.

Theorem (Eilenberg-Moore [3]). There exists a second quadrant spectral sequence \(\{ E_r, d_r \} \) such that

(1) \(E_r \to H^*(F; k) \).
\(E_2^{pq} = \text{Tor}_{H_{B}^n(B; \kappa)}(k, H^*(E; \kappa)) \), \(p \leq 0 \).

(3) \(E_r \) is in a natural way an algebra and \(d_r \) is a derivation of degree \((r, 1-r)\).

Theorem 3. Suppose that

\[F \rightarrow E \rightarrow B. \]

is a multiplicative fibre map over the simply connected base space \(B \). In addition assume that \(k = \mathbb{Z}_p \), \(p \) any prime or \(k = \mathbb{Q} \) and

(1) \(H^*(B; \kappa) = \mathbb{P} \left[x_1, \ldots \right] \).

(2) \(H_*(B; \kappa) \) is commutative.

Let \(\{ E_r, d_r \} \) denote the Eilenberg-Moore spectral of

\[F \rightarrow E \rightarrow B. \]

Then

(1) \(E_2 \cong H^*(E; \kappa) \big/ \pi^* \otimes E[u_1, \ldots] \) as an algebra, where \(u_i \in E_2^{-1} \).

(2) \(E_2 = E_0 = E^0_\kappa H^*(F; \kappa) \).

Proof. (1) follows directly from the main calculation of the first section. To see (2) observe that

\[d_r(E_2^{-p,*}) \subseteq E_3^{-p+r,*} = 0 \] if \(p = 0, 1 \) and \(r \geq 2 \).

Hence \(d_r \) vanishes on the algebra generators of \(E_2 \) and since it is a derivation we must have \(d_r = 0, r \geq 2 \). □

Corollary 4. If \(k = \mathbb{Z}_p \), \(p \) an odd prime, or \(k = \mathbb{Q} \), then under the hypotheses of Theorem 3 there is an isomorphism of algebras

\[H^*(F; \kappa) \cong \text{Tor}_{H^*(B; \kappa)}(k, H^*(E; \kappa)). \]

Proof. One merely notes that for a suitable filtration

\[E^0 H^*(F, \kappa) \cong H^*(E; \kappa) \big/ \pi^* \otimes E[u_1, \ldots] \]

\[\cong \text{Tor}_{H^*(B; \kappa)}(k, H^*(E; \kappa)) \]

and that \(E[u_1, \ldots] \) is a free commutative algebra. The result now follows by standard arguments. □

Remark 1. Theorem 3 can be used to calculate the \(\mathbb{Z}_2 \)-cohomology of stable two-stage Postnikov systems. (See [4], [5], [8].) It can also be used to simplify somewhat the calculations of [9]. From these calculations one can obtain the \(\mathbb{Z}_2 \) cohomology of the stages in the Postnikov tower of \(\text{SO} \).
Remark 2. It may be of interest, when more results are in, to apply Corollary 4 to the fibration

$$PL \to F \to F/PL.$$

References

9. R. Stong, *Determination of $H^*(BO(k, · · · , \infty); Z_2)$ and $H^*(BU(k, · · · , \infty); Z_2)$*, Trans. Amer. Math. Soc. 107 (1963), 526–544.

Princeton University