The Dirichlet problem for nonuniformly elliptic equations
HTML articles powered by AMS MathViewer
- by Neil S. Trudinger PDF
- Bull. Amer. Math. Soc. 73 (1967), 410-413
References
- David Gilbarg, Boundary value problems for nonlinear elliptic equations in $n$ variables, Nonlinear Problems (Proc. Sympos., Madison, Wis., 1962) Univ. Wisconsin Press, Madison, Wis., 1963, pp. 151–159. MR 0146506
- Philip Hartman and Guido Stampacchia, On some non-linear elliptic differential-functional equations, Acta Math. 115 (1966), 271–310. MR 206537, DOI 10.1007/BF02392210
- Philip Hartman, On quasilinear elliptic functional-differential equations, Differential Equations and Dynamical Systems (Proc. Internat. Sympos., Mayaguez, P.R., 1965) Academic Press, New York, 1967, pp. 393–407. MR 0221072
- Howard Jenkins and James Serrin, The Dirichlet problem for the minimal surface equation in higher dimensions, J. Reine Angew. Math. 229 (1968), 170–187. MR 222467, DOI 10.1515/crll.1968.229.170 5. O. A. Ladyzhenskaya and N. N. Ural’tseva, Linear and quasilinear elliptic equations, Izd. Nauka, Moscow (1964). (Russian)
- Zane C. Motteler, Existence theorems for certain quasi-linear elliptic equations, Pacific J. Math. 17 (1966), 279–299. MR 206477, DOI 10.2140/pjm.1966.17.279
- Guido Stampacchia, On some regular multiple integral problems in the calculus of variations, Comm. Pure Appl. Math. 16 (1963), 383–421. MR 155209, DOI 10.1002/cpa.3160160403 8. N. S. Trudinger, Quasilinear elliptic partial differential equations in n variables, Doctoral Dissertation, Stanford University, Department of Mathematics, July, 1966.
Additional Information
- Journal: Bull. Amer. Math. Soc. 73 (1967), 410-413
- DOI: https://doi.org/10.1090/S0002-9904-1967-11771-3
- MathSciNet review: 0214916