A geometric proof of Ryll-Nardzewski’s fixed point theorem
HTML articles powered by AMS MathViewer
- by I. Namioka and E. Asplund PDF
- Bull. Amer. Math. Soc. 73 (1967), 443-445
References
- N. Bourbaki, Eléments de mathématique. XV. Première partie: Les structures fondamentales de l’analyse. Livre V: Espaces vectoriels topologiques. Chapitre I: Espaces vectoriels topologiques sur un corps valué. Chapitre II: Ensembles convexes et espaces localement convexes, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1189, Hermann & Cie, Paris, 1953 (French). MR 0054161
- J. L. Kelley and Isaac Namioka, Linear topological spaces, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J., 1963. With the collaboration of W. F. Donoghue, Jr., Kenneth R. Lucas, B. J. Pettis, Ebbe Thue Poulsen, G. Baley Price, Wendy Robertson, W. R. Scott, Kennan T. Smith. MR 0166578, DOI 10.1007/978-3-662-41914-4
- Joram Lindenstrauss, On operators which attain their norm, Israel J. Math. 1 (1963), 139–148. MR 160094, DOI 10.1007/BF02759700
- Czesław Ryll-Nardzewski, On fixed points of semigroups of endomorphisms of linear spaces, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66) Univ. California Press, Berkeley, Calif., 1967, pp. 55–61. MR 0215134
Additional Information
- Journal: Bull. Amer. Math. Soc. 73 (1967), 443-445
- DOI: https://doi.org/10.1090/S0002-9904-1967-11779-8
- MathSciNet review: 0209904