Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

A geometric proof of Ryll-Nardzewski’s fixed point theorem
HTML articles powered by AMS MathViewer

by I. Namioka and E. Asplund PDF
Bull. Amer. Math. Soc. 73 (1967), 443-445
References
  • N. Bourbaki, Eléments de mathématique. XV. Première partie: Les structures fondamentales de l’analyse. Livre V: Espaces vectoriels topologiques. Chapitre I: Espaces vectoriels topologiques sur un corps valué. Chapitre II: Ensembles convexes et espaces localement convexes, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1189, Hermann & Cie, Paris, 1953 (French). MR 0054161
  • J. L. Kelley and Isaac Namioka, Linear topological spaces, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J., 1963. With the collaboration of W. F. Donoghue, Jr., Kenneth R. Lucas, B. J. Pettis, Ebbe Thue Poulsen, G. Baley Price, Wendy Robertson, W. R. Scott, Kennan T. Smith. MR 0166578, DOI 10.1007/978-3-662-41914-4
  • Joram Lindenstrauss, On operators which attain their norm, Israel J. Math. 1 (1963), 139–148. MR 160094, DOI 10.1007/BF02759700
  • Czesław Ryll-Nardzewski, On fixed points of semigroups of endomorphisms of linear spaces, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66) Univ. California Press, Berkeley, Calif., 1967, pp. 55–61. MR 0215134
Additional Information
  • Journal: Bull. Amer. Math. Soc. 73 (1967), 443-445
  • DOI: https://doi.org/10.1090/S0002-9904-1967-11779-8
  • MathSciNet review: 0209904