Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Quasi-periodic solutions of nonlinear ordinary differential equations with small damping
HTML articles powered by AMS MathViewer

by Marcelle Friedman PDF
Bull. Amer. Math. Soc. 73 (1967), 460-464
References
  • V. I. Arnol′d, Small denominators and problems of stability of motion in classical and celestial mechanics, Uspehi Mat. Nauk 18 (1963), no. 6 (114), 91–192 (Russian). MR 0170705
  • 2. N. N. Bogoliubov, On some statistical methods of mathematical physics, Izv. Acad. Nauk SSSR. 1945. (Russian) 3. N. N. Bogoliubov, On quasi-periodic solutions in nonlinear problems of mechanics, Lectures held at the First Mathematical Summer School, Kanev, 1963, Akad. Nauk, Ukrain. SSSR, 1964. 4. H. Bohr and O. Neugebauer, Über lineare Differential-gleichungen mit konstanten Koeffizienten und fast-periodischen rechter Seite, Nachr. Akad. Wiss. Göttingen, Math. phys. Kl 1926, pp. 8-22.
  • A. N. Kolmogorov, On conservation of conditionally periodic motions for a small change in Hamilton’s function, Dokl. Akad. Nauk SSSR (N.S.) 98 (1954), 527–530 (Russian). MR 0068687
  • 6. A. N. Kolmogorov, General theory of dynamical systems and classical mechanics, Vol. 1, pp. 315-333, Proc. Internat. Congress of Math., Amsterdam, 1954, Amsterdam: Nordhoff, Amsterdam, 1957. 7. I. G. Malkin, Some problems in the theory of nonlinear oscillations, State Publishing House, Moscow, 1956.
  • Jürgen Moser, A new technique for the construction of solutions of nonlinear differential equations, Proc. Nat. Acad. Sci. U.S.A. 47 (1961), 1824–1831. MR 132859, DOI 10.1073/pnas.47.11.1824
  • Jurgen Moser, Combination tones for Duffing’s equation, Comm. Pure Appl. Math. 18 (1965), 167–181. MR 179430, DOI 10.1002/cpa.3160180116
  • J. J. Stoker, Nonlinear Vibrations in Mechanical and Electrical Systems, Interscience Publishers, Inc., New York, N.Y., 1950. MR 0034932
Additional Information
  • Journal: Bull. Amer. Math. Soc. 73 (1967), 460-464
  • DOI: https://doi.org/10.1090/S0002-9904-1967-11783-X
  • MathSciNet review: 0229911